uniaxial compression
Recently Published Documents


TOTAL DOCUMENTS

2415
(FIVE YEARS 699)

H-INDEX

70
(FIVE YEARS 16)

2022 ◽  
Vol 8 ◽  
pp. 1410-1424
Author(s):  
Rui He ◽  
Li Ren ◽  
Ru Zhang ◽  
Zheming Zhu ◽  
Xin Sun

Author(s):  
Jian Xu ◽  
Liyang Zhou ◽  
Yanfeng Li ◽  
Jiulong Ding ◽  
Songhe Wang ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Estefano Muñoz-Moya ◽  
Claudio M. García-Herrera ◽  
Nelson A. Lagos ◽  
Aldo F. Abarca-Ortega ◽  
Antonio G. Checa ◽  
...  

AbstractMollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., $$pCO_2$$ p C O 2 -induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material’s stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.


Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This paper is part of a study of earthen mixtures for 3D printing of buildings. To meet the ever-growing environmental needs, the focus of the paper is on a particular type of biocomposite for the stabilization of earthen mixtures—the rice husk-lime biocomposite—and on how to enhance its effect on the long-term mechanical properties of the hardened product. Having assumed that the shredding of the vegetable fiber is precisely one of the possible ways to improve the mechanical properties, we compared the results of uniaxial compression tests performed on cubic specimens made with both shredded and unaltered vegetable fiber, for three curing periods. The results showed that the hardened earthen mixture is not a brittle material in the strict sense, because it exhibits some peculiar behaviors, anomalous for a brittle material. However, being a “designable” material, its properties can be varied with a certain flexibility to get as close as possible to the desired ones. One of the peculiar properties of the hardened earthen mixture deserves further investigation, rather than corrections. This is the vulcanization that occurs (in a completely natural way) in the long term, thanks to the mineralization of the vegetable fiber by carbonation of the lime.


2022 ◽  
Author(s):  
Hongyu Ran ◽  
Yuxia Guo ◽  
Guorui Feng ◽  
Chunqing Li

Abstract The strip and column cemented gangue backfill bodies (CGBBs) are the main supporting components in the design of constructional backfill mining for coal mining, which determines the stability of goaf. Previous researches have mostly focused on the mechanical properties of column CGBB, but the mechanical properties of strip CGBB are still unclear. Herein, the uniaxial compression experiments for strip and column CGBBs were conducted to compare the failure properties. The acoustic emission (AE) and two types of resistivity monitoring were used to monitor the damage evolution. The effect of the length-height ratio on the mechanical characteristic of strip CGBB was analyzed by discrete element simulation. The results show that: the strength and peak strain of strip CGBB under uniaxial compression is higher than those of column CGBB, and the strip CGBB shows better ductility. The stress of column CGBB decreases significantly faster than that of strip CGBB at the post-peak stage. The strength and ductility of strip CGBB increase with the increase of length-height ratio. The strip CGBB is destroyed from both ends to the middle under uniaxial compression, and the core bearing area is reduced correspondingly. The AE signal evolution of CGBBs under uniaxial compression before the peak stress contains three stages, and the AE signals of strip CGBB at the peak stress will not rise sharply compared with column CGBB. The resistivity monitoring effect of the horizontally symmetrical conductive mesh is better than that of the axial. The horizontal resistivity increases gradually with the increase of stress under uniaxial compression, and increases sharply at the peak stress, and then drops after the peak stress. The damage constitutive models and the stability monitoring models of the CGBBs are established based on the experimental results. This work would be instructive for the design and stability monitoring of CGBB.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Lichao Zhou ◽  
Gang Wang ◽  
Leibo Song ◽  
Wenzhao Chen ◽  
Hongxia Lei

Sign in / Sign up

Export Citation Format

Share Document