scholarly journals A Method Based on Extended Fuzzy Transforms to Approximate Fuzzy Numbers in Mamdani Fuzzy Rule-Based System

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Ferdinando Di Martino ◽  
Salvatore Sessa

We propose a new Mamdani fuzzy rule-based system in which the fuzzy sets in the antecedents and consequents are assigned in a discrete set of points and approximated by using the extended inverse fuzzy transforms, whose components are calculated by verifying that the dataset is sufficiently dense with respect to the uniform fuzzy partition. We test our system in the problem of spatial analysis consisting in the evaluation of the livability of residential housings in all the municipalities of the district of Naples (Italy). Comparisons are done with the results obtained by using trapezoidal fuzzy numbers in the fuzzy rules.

Author(s):  
Ferdinando Di Martino ◽  
Salvatore Sessa

We propose a new Mamdani fuzzy rule-based system in which the fuzzy sets in the antecedents and consequents are assigned in a discrete set of points and approximated by using the extended inverse fuzzy transforms, whose components are calculated by verifying that the dataset is sufficiently dense with respect to the uniform fuzzy partition. We test our system in the problem of spatial analysis consisting in the evaluation of the liveability of residential housings in all the municipalities of the district of Naples (Italy). Comparisons are done with the results obtained by using trapezoidal fuzzy numbers in the fuzzy rules.


2013 ◽  
pp. 498-512
Author(s):  
Erik Cuevas ◽  
Daniel Zaldivar ◽  
Marco Perez-Cisneros

Reliable corner detection is an important task in pattern recognition applications. In this chapter an approach based on fuzzy-rules to detect corners even under imprecise information is presented. The uncertainties arising due to various types of imaging defects such as blurring, illumination change, noise, et cetera. Fuzzy systems are well known for efficient handling of impreciseness. In order to handle the incompleteness arising due to imperfection of data, it is reasonable to model corner properties by a fuzzy rule-based system. The robustness of the proposed algorithm is compared with well known conventional detectors. The performance is tested on a number of benchmark test images to illustrate the efficiency of the algorithm in noise presence.


Author(s):  
Mosammat Tahnin Tariq ◽  
Aidin Massahi ◽  
Rajib Saha ◽  
Mohammed Hadi

Events such as surges in demand or lane blockages can create queue spillbacks even during off-peak periods, resulting in delays and spillbacks to upstream intersections. To address this issue, some transportation agencies have started implementing processes to change signal timings in real time based on traffic signal engineers’ observations of incident and traffic conditions at the intersections upstream and downstream of the congested locations. Decisions to change the signal timing are governed by many factors, such as queue length, conditions of the main and side streets, potential of traffic spilling back to upstream intersections, the importance of upstream cross streets, and the potential of the queue backing up to a freeway ramp. This paper investigates and assesses automating the process of updating the signal timing plans during non-recurrent conditions by capturing the history of the responses of the traffic signal engineers to non-recurrent conditions and utilizing this experience to train a machine learning model. A combination of recursive partitioning and regression decision tree (RPART) and fuzzy rule-based system (FRBS) is utilized in this study to deal with the vagueness and uncertainty of human decisions. Comparing the decisions made based on the resulting fuzzy rules from applying the methodology with previously recorded expert decisions for a project case study indicates accurate recommendations for shifts in the green phases of traffic signals. The simulation results indicate that changing the green times based on the output of the fuzzy rules decreased delays caused by lane blockages or demand surge.


Author(s):  
Masuma Mammadova ◽  
Nuru Bayramov ◽  
Zarifa Jabrayilova

The article proposes the principles for the development of a fuzzy rule-based physician decision support system n to determine the stages of the most common hepatocellular carcinoma (HCC) among malignant tumors of liver. The stages of HCC, i.e., critical situations, are expressed by different combinations of clinical signs of input data and emerging clinical conditions. These combinations shape the multiplicity of possible situations (critical situations) by forming linguistic rules that are in fuzzy relations with one another. The article presents the task of developing a fuzzy rules-based system for HCC staging by classifying the set of possible situations into given classes. In order to solve the problem, fuzzy rules of clinical situations and critical situations deviated from them are developed according to the possible clinical signs of input data. The rules in accordance with the decision-making process are developed in two phases. In the first phase, three input data are developed: nine rules are developed to determine possible clinical conditions based on the number, size, and vascular invasion of tumor. In the second phase, seven rules are developed based on possible combinations of input data on the presence of lymph nodes and metastases in these nine clinical conditions. At this stage, the rules representing the fuzzification of results obtained are also described. The latter provide an interpretation of results and a decision on related stage of HCC. It also proposes a functional scheme of fuzzy rules-based system for HCC staging, and presents the working principle of structural blocks. The fuzzy rule-based system for HCC staging can be used to support physicians to make diagnostic and treatment decisions


Author(s):  
Erik Cuevas ◽  
Daniel Zaldivar ◽  
Marco Perez-Cisneros

Reliable corner detection is an important task in pattern recognition applications. In this chapter an approach based on fuzzy-rules to detect corners even under imprecise information is presented. The uncertainties arising due to various types of imaging defects such as blurring, illumination change, noise, et cetera. Fuzzy systems are well known for efficient handling of impreciseness. In order to handle the incompleteness arising due to imperfection of data, it is reasonable to model corner properties by a fuzzy rule-based system. The robustness of the proposed algorithm is compared with well known conventional detectors. The performance is tested on a number of benchmark test images to illustrate the efficiency of the algorithm in noise presence.


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 440 ◽  
Author(s):  
Barbara Cardone ◽  
Ferdinando Di Martino

Here, we present a new unsupervised method aimed at obtaining a partition of a complex urban system in homogenous urban areas, called urban contexts. Our model integrates spatial analysis processes and a fuzzy rule-based system applied to manage the knowledge of domain experts; it is implemented using a GIS platform. The area of study is initially partitioned in microzones, homogeneous portions of the urban system, which are the atomic reference elements for the census data. With the contribution of domain experts, we identify the physical, morphological, environmental, and socio-economic indicators needed to identify synthetic characteristics of urban contexts and create the fuzzy rule set necessary for determining the type of urban context. We implement the set of spatial analysis processes required to calculate the indicators for the microzones and apply a Mamdani fuzzy rule system to classify the microzones. Finally, the partition of the area of study in urban contexts is obtained by dissolving continuous microzones belonging to the same type of urban context. Tests are performed on the Municipality of Pozzuoli (Naples, Italy); the reliability of the out model is measured by comparing the results with the ones obtained through a detailed analysis.


Sign in / Sign up

Export Citation Format

Share Document