EUREKA Physics and Engineering
Latest Publications


TOTAL DOCUMENTS

355
(FIVE YEARS 202)

H-INDEX

3
(FIVE YEARS 3)

Published By Ou Scientific Route

2461-4262, 2461-4254

Author(s):  
Van Nga Tran Thi ◽  
Khanh Nguyen Lam ◽  
Cuong Nguyen Van

In machining processes, grinding is often chosen as the final machining method. Grinding is often chosen as the final machining method. This process has many advantages such as high precision and low surface roughness. It depends on many parameters including grinding parameters, dressing parameters and lubrication conditions. In grinding, the surface roughness of a workpiece has a significant influence on quality of the part. This paper presents a study of the grinding surface roughness predictions of workpieces. Based on the previous studies, the study built a relationship between the abrasive grain tip radius and the Standard marking systems of the grinding wheel for conventional and superabrasive grinding wheels (diamond and CBN abrasive). Based on this, the grinding surface roughness was predicted. The proposed model was verified by comparing the predicted and experimental results. Appling the research results, the surface roughness when grinding three types of steel D3, A295M and SAE 420 with Al2O3 and CBN grinding wheels were predicted. The predicted surface roughness values were close to the experimental values, the average deviation between predictive results and experimental results is 15.11 % for the use of Al2O3 grinding wheels and 24.29 % for the case of using CBN grinding wheels. The results of the comparison between the predicted model and the experiment show that the method of surface roughness presented in this study can be used to predict surface roughness in each specific case. The proposed model was verified by comparing the predicted and measured results of surface hardness. This model can be used to predict the surface hardness when surface grinding


Author(s):  
Serhii Yevseiev ◽  
Alla Havrylova ◽  
Olha Korol ◽  
Oleh Dmitriiev ◽  
Oleksii Nesmiian ◽  
...  

The transfer of information by telecommunication channels is accompanied by message hashing to control the integrity of the data and confirm the authenticity of the data. When using a reliable hash function, it is computationally difficult to create a fake message with a pre-existing hash code, however, due to the weaknesses of specific hashing algorithms, this threat can be feasible. To increase the level of cryptographic strength of transmitted messages over telecommunication channels, there are ways to create hash codes, which, according to practical research, are imperfect in terms of the speed of their formation and the degree of cryptographic strength. The collisional properties of hashing functions formed using the modified UMAC algorithm using the methodology for assessing the universality and strict universality of hash codes are investigated. Based on the results of the research, an assessment of the impact of the proposed modifications at the last stage of the generation of authentication codes on the provision of universal hashing properties was presented. The analysis of the advantages and disadvantages that accompany the formation of the hash code by the previously known methods is carried out. The scheme of cascading generation of data integrity and authenticity control codes using the UMAC algorithm on crypto-code constructions has been improved. Schemes of algorithms for checking hash codes were developed to meet the requirements of universality and strict universality. The calculation and analysis of collision search in the set of generated hash codes was carried out according to the requirements of a universal and strictly universal class for creating hash codes


Author(s):  
Larisa Tretiakova ◽  
Liudmyla Mitiuk ◽  
Igor Panasiuk ◽  
Elina Rebuel

The problem of production waste storage in open areas of an enterprise with a galvanic shop for the production of chips and microchips has been investigated. The composition of the sludge obtained after sewage treatment of the production of the copper line was investigated. The aim of the article is to develop a mathematical model for predicting the distribution of compounds with heavy metals in the soil during long-term storage of galvanic sludge in open areas. Modeling the process of movement of salts from the earth's surface into the lower layers of the aeration zone occurs according to the laws of molecular diffusion. The method is developed on the basis of a mathematical model that makes it possible to estimate the spread over the depth of the ground and level of soil salinity over time using initial information about soil structure and its characteristics (molecular diffusion coefficient, volume humidity), annual volumes and conditions of sludge storage in the enterprise. Restrictions are set: the presence of harmful substances on the soil surface with a concentration that exceeds the permissible level; inadmissibility of harmful substances to aquifers. The practical use of the method made it possible to identify the main dangers during long-term storage of galvanic waste in open areas. The dynamics of soil salinity levels and the depth of penetration of heavy metals increase over twenty years of conservation has been determined, as well as the possibility of hazardous compounds entering groundwater has been assessed. Polyvinyl chloride packaging has a maximum life span of 15 years. Waste should not be stored in packages and in closed areas for more than 10 years. According to the prediction results, it can be stated that storage in landfills of galvanic waste for more than 15 years leads to significant salinization of the soil and creates conditions for an emergency situation, which is caused by harmful substances entering the water horizons. Recommendations for improving storage conditions are given and the need for recycling of industrial waste is substantiated


2022 ◽  
pp. 118-130
Author(s):  
Stanislav Popov ◽  
Liliia Frolova ◽  
Oleksii Rebrov ◽  
Yevheniia Naumenko ◽  
Оlenа Postupna ◽  
...  

The object of research in this work was cast iron for machine-building parts, alloyed with Al. The possibility of improving the mechanical properties of cast iron by choosing the optimal Mn – Al combinations, depending on the carbon content in the cast iron, was determined. The study was carried out on the basis of available retrospective data of serial industrial melts by constructing the regression equation for the ultimate strength of cast iron in the three-factor space of the input variables C – Mn – Al. The optimization problem was solved by the ridge analysis method after reducing the dimension of the factor space by fixing the carbon content at three levels: C = 3 %, C = 3.3 %, and C = 3.6 %. It was found that the maximum values of the ultimate strength are achieved at the minimum level of carbon content (C = 3%) and are in the range of values close to 300 MPa. In this case, the Al content is in the range (2.4–2.6) %, and the Mn content is about 0.82 %. With an increase in the carbon content, there is a tendency to a decrease in the content of Mn and Al in the alloy, which is necessary to ensure the ultimate strength close to 300 MPa. The results of the ridge analysis of the response surface also showed that at the upper limit of the carbon content (C = 3.6%), it is not possible to reach the ultimate strength of 300 MPa in the existing range of Mn and Al variation. All solutions are verified for the following ranges of input variables C = (2.94–3.66) %, Mn = (0.5–1.1) %, Al = (1.7–2.9) %. Graphical-analytical descriptions of the optimal Mn – Al ratios are obtained, depending on the actual content of carbon in the alloy, which make it possible to purposefully select the optimal melting modes by controlling the tensile strength of the alloy


2022 ◽  
pp. 103-117
Author(s):  
Sukanto ◽  
Wahyono Suprapto ◽  
Rudy Soenoko ◽  
Yudy Surya Irawan

This study aims to determine the effect of milling time and sintering temperature parameters on the alumina transformation phase in the manufacture of Aluminium Matrix Composites (AMCs) reinforced by 20 % silica sand tailings using powder metallurgy technology. The matrix and fillers use waste to make the composites more efficient, clean the environment, and increase waste utilization. The milling time applied to the Mechanical Alloying (MA) process was 0.5, 6, 24, 48, and 96 hours, with a ball parameter ratio of 15:1 and a rotation of 93 rpm. Furthermore, hot compaction was carried out using a 100 MPa two-way hydraulic compression machine at a temperature of 300 °C for 20 minutes. The temperature variables of the sintering parameter process were 550, 600 to 650 °C, with a holding time of 10 minutes. Characterization of materials carried out included testing particle size, porosity, X-Ray Diffraction (XRD), SEM-Image, and SEM-EDX. The particle measurement of mechanical alloying processed, using Particle Size Analyzer (PSA) instrument and based on XRD data using the Scherrer equation, showed a relatively similar trend, decreasing particle size occurs when milling time was increased 0.5 to 24 hours. However, when the milling time increases to 48 and 96 hours, the particle size tends to increase slightly, due to cold-weld and agglomeration when the Mechanical Alloying is processed. The impact is the occurrence of the matrix and filler particle pairs in the cold-weld state. So, the results of XRD and SEM-EDX characterization showed a second phase transformation to form alumina compounds at a relatively low sintering temperature of 600 °C after the mechanical alloying process was carried out with a milling time on least 24 hours


2022 ◽  
pp. 93-102
Author(s):  
Do Duc Trung ◽  
Le Dang Ha

In this article, a study on intermittent surface grinding using aluminum oxide grinding wheel with ceramic binder is presented. The testing material is 20XH3A steel (GOST standard – Russian Federation). The testing sample has been sawn 6 grooves, with the width of each groove of 10 mm, the grooves are evenly distributed on the circumference of sample. The testing sample resembles a splined shaft. An experimental matrix of nine experiments has been built by Taguchi method, in which abrasive grain size, workpiece speed, feed rate and depth of cut were selected as input variables. At each experiment, surface roughness (Ra) and roundness error (RE) have been measured. Experimental results show that the aluminum oxide and ceramic binder grinding wheels are perfectly suitable for grinding intermittent surface of 20XH3A steel. Data Envelopment Analysis based Ranking (DEAR) method has been used to solve the multi-objective optimization problem. The results also showed that in order to simultaneously ensure minimum surface roughness and RE, abrasive grain size is 80 mesh, workpiece speed is 910 rpm, feed rate is 0.05 mm/rev and depth of cut is 0.01 mm. If evaluating the grinding process through two criteria including surface roughness and RE, depth of cut is the parameter having the greatest effect on the grinding process, followed by the influence of feed rate, workpiece speed, and abrasive grain is the parameter having the least effect on the grinding process. In addition, the effect of each input parameter on each output parameter has also been analyzed, and orientations for further works have also been recommended in this article


Author(s):  
Dmitry Dezhin ◽  
Roman Ilyasov

The use of liquid hydrogen as a fuel will be inevitable in the aviation of the future. This statement means that manufacturers will also implement liquid hydrogen for cooling all superconducting aviation equipment of an electric propulsion system. The development of fully electric aircraft is the most promising solution in this case. Scientists from the Department of electrical machines and power electronics of Moscow aviation institute have conducted calculations and theoretical researches of critical specific mass-dimensional parameters (MW/ton and MW/m3 at 21 K) of fully superconducting aviation synchronous generator of the electric propulsion system. The results are in this article. The article discusses the results 3D finite element modeling (FEM) simulation of a 5 MW fully superconducting synchronous generator with combined excitation. Superconducting armature and axial excitation windings based on second generation high temperature superconductors (HTS-2G) are located on the stator, which makes it possible to contactlessness and the absence of sliding seals. A dry gap will reduce gas-dynamic losses and increase the nominal peripheral speed of the rotor. The use of liquid hydrogen as a coolant makes it possible to significantly increase the linear load of the generator, and high current densities to reduce the cross-sectional area of the coils, which will make it possible to place them in individual cryostats in the future. Individual cryostats will allow to remove the heat release of magnetic losses from the cryogenic zone and reduce the consumption of refrigerant. For the purpose of internal redundancy of the HTS coils, the machine has a complete set of reserve winding made of ultrapure aluminum, also cooled by liquid hydrogen. If the superconducting coils get out of the stand, the generator will provide 15 % power on standby


Author(s):  
Denny Utomo ◽  
Pratikto Pratikto ◽  
Purnomo Budi Santoso ◽  
Sugiono Sugiono

Supplier selection is a complex problem in the current Industry 4.0 era. The large number of suppliers with different performance qualities makes it difficult for the company's internal parties to choose the appropriate supplier. The suitability of quality suppliers needed to supply raw materials needed by the industry is an important matter to be resolved. In the hand tractor assembly industry, this small and medium industry is also very dependent on the availability of supply materials, and of course it also depends on the selection of the supplier itself. In this study, the object of research is the 151 hand tractor assembly manufacturing industry using 10 main criteria for selecting suppliers. Each criterion has a weight that is calculated using the Fuzzy AHP method so as to obtain alternative supplier results that are displayed in order. A supplier is a company or individual that provides the raw materials needed by the company and its competitors to produce certain goods. In this study, a decision support system for supplier selection at the company has been developed using the AHP fuzzy method. The results of this study are expected to help companies in selecting suppliers that match the predetermined criteria. In building a decision support system that provides supplier recommendations, the authors apply the AHP fuzzy method in the process. With the Supplier Selection Decision Support System Using the AHP Fuzzy Method, it can help companies in selecting suppliers. Based on the research that has been done, suggestions can be made for a Decision Support System for Supplier Selection Using the Fuzzy AHP Method so that in the future it can facilitate the use of a more dynamic system


2022 ◽  
pp. 131-142
Author(s):  
Ahmad A. Khalaf ◽  
Salwa A. Abed ◽  
Saad Sami Alkhfaji ◽  
Mudhar A. Al-Obaidi ◽  
Muammel M. Hanon

Recently, there has been a tendency for scientific studies to deal with natural materials as fillers and reinforcement for polymer composites, which are used in many different applications due to their environmentally friendly properties when compared to synthetic materials. The current study aims to preserve the environment by dealing with natural materials and their influence on the mechanical properties and water absorption property of the polymer composites. In this study, epoxy composites were produced from local natural sourced non-hazardous raw natural materials using grey relational analysis (GRG). The materials used for fabrication include micro-filler of pollen palm 50 μm, seashell 75 μm and epoxy resin. Nine different composites were prepared using pollen palm and seashell as reinforcement material by varying the wt % of the micro-filler. Rule of the mixture was used for formulation and wt % of (0.5, 1 and 1.5) % reinforcement and 99.5, 99 and 98.5 % epoxy (binder) were used for composites. Grey relational analysis was conducted in order to scale the multi-response performance to a single response. The results indicate that optimum performance can be achieved with the addition of 1.5 wt % micro-filler of seashell, which achieved the first rank, while the second rank achieved by 0.5 wt % micro-filler of palm pollen and seashell when compared to other composites. The addition of micro-fillers has improved greatly the mechanical properties of epoxy composites. The loading of micro-fillers has influenced the water absorption property of composites based epoxy in ascending order


Author(s):  
Bulbul Ongar ◽  
Hristo Beloev ◽  
Iliya Iliev ◽  
Assem Ibrasheva ◽  
Anara Yegzekova

Even though natural sources of air pollution account for over 50 % of sulphur compounds, 93 % of nitrogen oxide which are the most dangerous artificial anthropogenic sources of air pollution and primarily associated with the combustion of fossil fuel. Coal-fired thermal power plants and industrial fuel-burning plants that emit large quantities of nitrogen oxides (NО and NО2), solids (ash, dust, soot), as well as carbon oxides, aldehydes, organic acids into the atmosphere pollute the environment in majority. In the present work, a mathematical model and a scheme for calculating the formation of nitrogen oxide has been developed. Also, the dependence of the rate of release of fuel nitrogen from coal particles at the initial stage of gasification and content of volatiles has been obtained. The main regularities of the formation of NOx at the initial section of the flame in the ignition zone of the swirl burner flame during the combustion of Ekibastuz coal have been revealed. Modern environmental requirements for the modernization of existing and the creation of new heat and power facilities determine the exceptional relevance of the development of effective methods and constructions to reduce emissions of nitrogen oxides, sulfur oxides and ash to 200, 300, and 100 mg/nm3 at a=1.4. The dust consumption in all experiments was kept constant and amounted to 0.042 g/s, as well as with the results of calculating the thermal decomposition of the Ekibastuz coal dust, the recombination of atomic nitrogen into nitrogen molecules, and the kinetics of the formation of fuel nitric oxide. It was found that despite the presence of oxygen in Ekibastuz coal for gases Odaf=11.8 % in an inert atmosphere, nitrogen oxides are not formed


Sign in / Sign up

Export Citation Format

Share Document