scholarly journals Acceleration of Gas Reservoir Simulation Using Proper Orthogonal Decomposition

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yi Wang ◽  
Bo Yu ◽  
Ye Wang

High-precision and high-speed reservoir simulation is important in engineering. Proper orthogonal decomposition (POD) is introduced to accelerate the reservoir simulation of gas flow in single-continuum porous media via establishing a reduced-order model by POD combined with Galerkin projection. Determination of the optimal mode number in the reduced-order model is discussed to ensure high-precision reconstruction with large acceleration. The typical POD model can achieve high precision for both ideal gas and real gas using only 10 POD modes. However, acceleration of computation can only be achieved for ideal gas. The obstacle of POD acceleration for real gas is that the computational time is mainly occupied by the equation of state (EOS). An approximation method is proposed to largely promote the computational speed of the POD model for real gas flow without decreasing the precision. The improved POD model shows much higher acceleration of computation with high precision for different reservoirs and different pressures. It is confirmed that the acceleration of the real gas reservoir simulation should use the approximation method instead of the computation of EOS.

2021 ◽  
Vol 2090 (1) ◽  
pp. 012045
Author(s):  
Nikolay M. Evstigneev ◽  
Oleg I. Ryabkov

Abstract The system of governing equations for the dynamics of the compressible viscous ideal gas is considered in the 3D bounded domain with the inflow and outflow boundary conditions. The cylinder is located in the domain. Such problem is simulated using the high order WENO-scheme for inviscid part of the equations and using 4-th order central approximation for the viscous tensor part with the third order temporal discretization. The method of Proper Orthogonal Decomposition (POD) is applied to the problem at hand in order to extract the most active nodes. Cascades of bifurcations of periodic orbits and invariant tori are found that correspond to the excitation in different POD modes. The approximation of the reduced order model is analyzed and it is shown that one cannot make parameter extrapolations for the reduced order model to capture the same dynamics as is observed in the original full size model.


Author(s):  
Alok Sinha

This paper deals with the development of an accurate reduced-order model of a bladed disk with geometric mistuning. The method is based on vibratory modes of various tuned systems and proper orthogonal decomposition of coordinate measurement machine (CMM) data on blade geometries. Results for an academic rotor are presented to establish the validity of the technique.


Author(s):  
Elizabeth H. Krath ◽  
Forrest L. Carpenter ◽  
Paul G. A. Cizmas ◽  
David A. Johnston

Abstract This paper presents a novel, more efficient reduced-order model based on the proper orthogonal decomposition (POD) for the prediction of flows in turbomachinery. To further reduce the computational time, the governing equations were written as a function of specific volume instead of density. This allowed for the pre-computation of the coefficients of the system of ordinary differential equations that describe the reduced-order model. A penalty method was developed to implement time-dependent boundary conditions and achieve a stable solution for the reduced-order model. Rotor 67 was used as a validation case for the reduced-order model, which was tested for both on- and off-reference conditions. This reduced-order model was shown to be more than 10,000 times faster than the full-order model.


2020 ◽  
Vol 82 ◽  
pp. 108554 ◽  
Author(s):  
M. Salman Siddiqui ◽  
Sidra Tul Muntaha Latif ◽  
Muhammad Saeed ◽  
Muhammad Rahman ◽  
Abdul Waheed Badar ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Guang-Ri Piao ◽  
Hyung-Chun Lee

AbstractA reduced-order model for distributed feedback control of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is discussed. To retain more information in our model, we first calculate the functional gain in the full-order case, and then invoke the proper orthogonal decomposition (POD) method to design a low-order controller and thereby reduce the order of the model. Numerical experiments demonstrate that a solution of the reduced-order model performs well in comparison with a solution for the full-order description.


Sign in / Sign up

Export Citation Format

Share Document