oil pipeline
Recently Published Documents


TOTAL DOCUMENTS

1316
(FIVE YEARS 422)

H-INDEX

26
(FIVE YEARS 6)

Author(s):  
Chavala Lakshmi Narayana ◽  
Rajesh Singh ◽  
Anita Gehlot

These days, the oil industrial industry is leaning toward employing smart field improvements to streamline various activities in the midstream area. Oil transportation over large distances via pipelines has a cheap cost and high efficiency in this sector. If pipelines are not properly maintained, they may fail, potentially causing catastrophic, long-term, and irreversible consequences on both natural and human conditions. Low power wide area networks (LPWANs) are without a doubt one of the domains that cause the most from industrial fields when it comes to realizing the vision of the internet of things (IoT). Long-range (LoRa) is an emerging LPWAN technology that is particularly useful for transmitting data over long distances. The goal of this work is to offer a methodology for managing oil pipelines over long distances utilizing the LoRa communication protocol and the installation of sensor nodes and LoRa gateways along the pipeline. We also used the optimized network engineering tools (OPNET) simulator to examine various simulation findings of LoRa performance.


2022 ◽  
Author(s):  
Nitin Goyal ◽  
Ashok Kumar ◽  
Renu Popli ◽  
Lalit Kumar Awasthi ◽  
Nonita Sharma ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 501
Author(s):  
Mikhail L. Lobanov ◽  
Vladislav A. Khotinov ◽  
Vladimir N. Urtsev ◽  
Sergey V. Danilov ◽  
Nikolay V. Urtsev ◽  
...  

Thermo-mechanical controlled processing (TMCP) is employed to obtain the required level of mechanical properties of contemporary HSLA steel plates utilized for gas and oil pipeline production. The strength and crack resistance of pipeline steels are mainly determined by its microstructure and crystallographic texture. In this study, the influence of the structural and textural states of industrially produced API-5L X70-X80 pipeline steels on tensile mechanical properties was analyzed. TMCP routes with different hot rolling temperatures and cooling rates were employed. The texture of steel was assessed using the Taylor factor, which was calculated based on electron backscatter diffraction (EBSD). The decrease in rolling temperature resulted in the sharper texture characterized by {001} planes banding (cleavage planes in the bcc lattice) parallel to rolling direction. The tensile deformation behavior at the stage of necking was determined by the crystallographic and morphological texture of the material and demonstrated significant anisotropy. Rupture of all investigated samples was accompanied by the development of splitting on the fracture surface. The splitting was localized in the rolling plane similar to the splitting in standard Charpy tests of pipeline steels.


Author(s):  
E.B. Priyanka ◽  
S. Thangavel ◽  
Priyanka Prabhakaran

Oil and Gas Pipeline (OGP) projects face a wide scope of wellbeing and security Risk Factors (RFs) all around the world, especially in the oil and gas delivering nations having influencing climate and unsampled data. Lacking data about the reasons for pipeline risk predictor and unstructured data about the security of the OGP prevent endeavors of moderating such dangers. This paper, subsequently, means to foster a risk analyzing framework in view of a comprehensive methodology of recognizing, dissecting and positioning the related RFs, and assessing the conceivable pipeline characteristics. Hazard Mitigation Methods (HMMs), which are the initial steps of this approach. A new methodology has been created to direct disappointment investigation of pinhole erosion in pipelines utilizing the typical pipeline risk strategy and erosion climate reenactments during a full life pattern of the pipeline. Hence in the proposed work, manifold learning with rank based clustering algorithm is incorporated with the cloud server for improved data analysis. The probability risk rate is identified from the burst pressure by clustering the normal and leak category to improve the accuracy of the prediction system experimented on the lab-scale oil pipeline system. The numerical results like auto-correlation, periodogram, Laplace transformed P-P Plot are utilized to estimate the datasets restructured by the manifold learning approach. The obtained experimental results shows that the cloud server datasets are clustered with rank prioritization to make proactive decision in faster manner by distinguishing labelled and unlabeled pressure attributes.


Author(s):  
T.T. Bekibayev ◽  
◽  
G.I. Ramazanova ◽  
M.A. Pakhomov ◽  
D.Zh. Bossinov ◽  
...  

This paper presents the results of determining the optimal plans for pumping oil through the main oil pipelines of Kazakhstan. The calculation methodology is based on determining the minimum unit cost of pumping depending on oil flow rate. Oil pumping energy-saving modes are determined under optimal operating conditions of pumping units and heating furnaces at stations. Determination of the optimal pumping plan is implemented as a separate module of the SmartTranPro software. Pumped oil volumes on the oil pipeline sections were determined on the basis of the automated system of control and metering of electrical energy data of KazTransOil JSC. Optimal pumping plans for monthly oil volumes in the Kalamkas – Karazhanbas and Dzhumagaliev – Atasu pipeline sections for cold and warm periods were calculated on the basis of the found dependence of the pumping unit cost. For each range of oil mass flow rate, specific costs for oil pumping and a list of operating pumps at oil pumping stations located along the pipeline section are indicated.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012023
Author(s):  
Wu Ye ◽  
Yong Lu ◽  
Lingzhi Xi ◽  
Qiang Zhang ◽  
Shaobin Hu

Abstract Rock breaking technology based on dry ice and energy-gathered agent has been developed and successfully applied in trench excavation for construction of oil pipeline. The vibration velocity waveform induced by this technology was monitored in site test to determine the attenuation law of vibration velocity with hypocentral distance. The results show that this rock breaking technology is effective method of trench excavation. It does not excessively damage the adjacent rock mass, ensuring the integrity of ditch walls. The vibration velocity induced by this technology is decay with the increase of hypocentral distance. At the hypocentral distance of 10m, the vibration velocity reduces to less than 20mm/s, which meets the requirements of the safety standard of blasting vibration in general buildings engineering. The results of this experiment have an important guiding effect on the field engineering practice and application of rock breaking technology based on dry ice and energy-gathered agent.


2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 147-162
Author(s):  
Batyr Orazbayev ◽  
Zhadra Moldasheva ◽  
Kulman Orazbayeva ◽  
Valentina Makhatova ◽  
Lyailya Kurmangaziyeva ◽  
...  

The relevance of the study is substantiated by the fact that when managing the processes of oil transportation through main pipelines, it becomes necessary to determine and select the optimal operating modes of the oil pipeline units, taking into account the fuzziness of some part of the initial information. In this regard, solving the problem of multi-criteria selection of effective operating modes for an oil heating station for a hot oil pipeline system, which is often described in a fuzzy environment, based on the apparatus of fuzzy set theories, is an urgent scientific and practical problem. A method for the synthesis of models in the conditions of fuzzy output parameters of the object has been developed, with the help of which fuzzy models of the investigated oil heating station of the main oil pipeline have been built. Based on the modification and combination of various optimality principles, mathematical formulations of the problem of multi-criteria selection of effective operating modes for an oil heating station in a fuzzy environment are obtained. By modifying and adapting the principles of guaranteed results and equality in a fuzzy environment, a heuristic method has been developed for solving the formulated problem of selecting object's operation modes using the initial fuzzy information. The proposed heuristic method for multi-criteria selection in a fuzzy environment is based on the use of the experience and knowledge of the decision-maker. The proposed approach is implemented in the formulation and solution of the problem of multi-criteria selection of operating modes of the oil heating station in Atyrau of the Uzen-Atyrau-Samara main oil pipeline. As a result of the application of the proposed method, an improvement in the degree of fulfillment of a fuzzy restriction on environmental impact was achieved by 2 %, as well as the optimal values of the operating parameters of the object were improved: the temperature was reduced by 1.85 % (5.67 K), pressure – by 0.04 % (kPa) and fuel consumption – by 2.9 % (0.0002 kg/s). The obtained results have confirmed the effectiveness of the proposed approach to solving the assigned tasks.


Author(s):  
Sergey Yu. Kozmenko ◽  

Over the past decade, the Chinese economy has grown at a faster pace (up to 8 % per year), which is a consequence of the unprecedented expansion of China in world markets. Such a competitive position presupposes the same significant (up to 15 %) growth in energy consumption, which is ensured by both an increase in domestic production (to a lesser extent) and imports of energy resources — oil, pipeline and liquefied natural gas and coal. In the context of aggravated competition between the leading economies of the world (China and the United States), the security of transporting energy resources from the Persian Gulf and other regions through the narrows of the Strait of Hormuz and Malacca, as well as through the regions of the South China Sea and the Taiwan Strait controlled by the United States, acquires a new sound for China. To solve this problem, China is building up its naval presence in the direction of the Southern Silk Road, but mainly in the waters of the Pacific Ocean seas — the Yellow, East China and South China, that is, in the operational zones of the three fleets of the Chinese Navy — the North, East and South, from the exits to the operational zone of the Russian Pacific Fleet in the waters of the Sea of Japan and the Sea of Okhotsk. Demonstration of strength and flag during joint sailing of the two fleets is carried out within the framework of the exercises of the “Maritime Interaction” format from 2012 to 2021 inclusive, except for 2020 due to the aggravation of the epidemiological situation in connection with COVID-19. The latent goal of these exercises is to practice coastal defense missions in the zone where China's strategic oil reserve is located.


2021 ◽  
pp. 125-133
Author(s):  
A. U. Yakupov ◽  
D. A. Cherentsov ◽  
S. Yu. Toropov ◽  
M. Yu. Zemenkova ◽  
A. B. Shabarov ◽  
...  

The article calculates the starting pressures and the time of safe shutdown of the pipeline during the transportation of high-viscosity and high pour point oils, the rheological properties of which depend on temperature. When the oil temperature decreases, its viscosity increases and paraffins are released, forming a strong structure, for which additional stress is necessary to shift. To start a stopped oil pipeline transporting oil with such characteristics, the pressure developed by the pumps may not be enough. In this regard, it is necessary to determine the safe time of stopping the oil pipeline. The relevance increases with an increase in the share of high-viscosity and high pour point oil in the total production volume. Predictive control, based on the analysis of data on the characteristics of the transported product and forecasting the nature of their changes, is an intelligent tool for managing the efficiency of technological transport enterprises. Predictive control allows you to choose the optimal way to ensure reliable and trouble-free operation of the main equipment of hydrocarbon transport systems.A numerical experiment was carried out for the effect of seasonal cooling devices to protect permafrost soils from thawing, at the time of a safe shutdown of the oil pipeline. The values of starting pressures have been determined. Dependence of the pressures on the duration of the safe shutdown of the pipeline has been established. It was revealed that due to the operation of seasonally operating cooling devices, the difference between the temperature soil and oil increases during cooling, and the cooling rate increases. More pressure will be required to launch such an oil pipeline.


Sign in / Sign up

Export Citation Format

Share Document