unsteady state
Recently Published Documents


TOTAL DOCUMENTS

1354
(FIVE YEARS 142)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Dominik Meyer ◽  
Jannik Schumacher ◽  
Jens Friedland ◽  
Robert Güttel

The utilization of renewable electricity for power-to-gas (PtG) applications induces fluctuations in the H2 availability from water electrolysis. For subsequent methanation of CO or CO2 the unsteady-state operation of the respective reactor allows to minimize H2 storage capacities. However, the impact of temporal fluctuations in feed gas composition on the methanation reaction and the respective transient kinetics has not yet been fully understood. We investigated the methanation of various CO/CO2 (COx) feed gas mixtures under periodically changing gas compositions with emphasis on the effect of the frequency on the reactor response. We show that the frequency response of CH4 exhibits a characteristic hysteresis, which depends on the switching direction between COx-lean and COx-rich feeds and their composition. From the shape of the hysteresis we are able to conclude on the preferred COx species being hydrogenated to CH4 under respective conditions, which also provides mechanistic insights. By applying high cycling frequencies, the highly reactive species present under CO methanation conditions can even selectively be activated, which explains the higher reactivity compared to steady-state conditions reported, frequently.


Author(s):  
Shuai Liu ◽  
Yuanning Liu ◽  
Xiaodong Zhu ◽  
Jing Liu ◽  
Guang Huo ◽  
...  

In this paper, a two-stage multi-category recognition structure based on texture features is proposed. This method can solve the problem of the decline in recognition accuracy in the scene of lightweight training samples. Besides, the problem of recognition effect different in the same recognition structure caused by the unsteady iris can also be solved. In this paper’s structure, digitized values of the edge shape in the iris texture of the image are set as the texture trend feature, while the differences between the gray values of the image obtained by convolution are set as the grayscale difference feature. Furthermore, the texture trend feature is used in the first-stage recognition. The template category that does not match the tested iris is the elimination category, and the remaining categories are uncertain categories. Whereas, in the second-stage recognition, uncertain categories are adopted to determine the iris recognition conclusion through the grayscale difference feature. Then, the experiment results using the JLU iris library show that the method in this paper can be highly efficient in multi-category heterogeneous iris recognition under lightweight training samples and unsteady state.


Author(s):  
Kirill Zubarev

Two differential equations of moisture transfer based on the theory of moisture potential have been considered. The first equation includes the record of moisture transfer mechanisms of  vapor and liquid phases and their relationship. The second equation is a simplified form of the first equation which makes it possible to apply a discrete-continuous approach. The peculiar properties of the boundary conditions setting of the outside air for temperature and humidity fields have been presented. It is proved that the use of the discrete-continuous method provides high accuracy of calculations and can be used in engineering practice to assess the unsteady humidity regime of enclosing structures.


2021 ◽  
Author(s):  
Sarah Abdullatif Alruwayi ◽  
Ozan Uzun ◽  
Hossein Kazemi

Abstract In this paper, we will show that it is highly beneficial to model dual-porosity reservoirs using matrix refinement (similar to the multiple interacting continua, MINC, of Preuss, 1985) for water displacing oil. Two practical situations are considered. The first is the effect of matrix refinement on the unsteady-state pressure solution, and the second situation is modeling water-oil, Buckley-Leverett (BL) displacement in waterflooding a fracture-dominated flow domain. The usefulness of matrix refinement will be illustrated using a three-node refinement of individual matrix blocks. Furthermore, this model was modified to account for matrix block size variability within each grid cell (in other words, statistical distribution of matrix size within each grid cell) using a discrete matrix-block-size distribution function. The paper will include two mathematical models, one unsteady-state pressure solution of the pressure diffusivity equation for use in rate transient analysis, and a second model, the Buckley-Leverett model to track saturation changes both in the reservoir fractures and within individual matrix blocks. To illustrate the effect of matrix heterogeneity on modeling results, we used three matrix bock sizes within each computation grid and one level of grid refinement for the individual matrix blocks. A critical issue in dual-porosity modeling is that much of the fluid interactions occur at the fracture-matrix interface. Therefore, refining the matrix block helps capture a more accurate transport of the fluid in-and-out of the matrix blocks. Our numerical results indicate that the none-refined matrix models provide only a poor approximation to saturation distribution within individual matrices. In other words, the saturation distribution is numerically dispersed; that is, no matrix refinement causes unwarranted large numerical dispersion in saturation distribution. Furthermore, matrix block size-distribution is more representative of fractured reservoirs.


2021 ◽  
Author(s):  
Abdulla Aljaberi ◽  
Seyed Amir Farzaneh ◽  
Shokoufeh Aghabozorgi ◽  
Mohammad Saeid Ataei ◽  
Mehran Sohrabi

Abstract Oil recovery by low salinity waterflood is significantly affected by fluid-fluid interaction through the micro-dispersion effect. This interaction influences rock wettability and relative permeability functions. Therefore, to gain a better insight into multiphase flow in porous media and perform numerical simulations, reliable relative permeability data is crucial. Unsteady-state or steady-state displacement methods are commonly used in the laboratory to measure water-oil relative permeability curves of a core sample. Experimentally, the unsteady-state core flood technique is more straightforward and less time-consuming compared to the steady-state method. However, the obtained data is limited to a small saturation range, and the associated uncertainty is not negligible. On the other hand, the steady-state method provides a more accurate dataset of two-phase relative permeability needed in the reservoir simulator for a reliable prediction of the high salinity and low salinity waterflood displacement performance. Considering the limitations of the unsteady state method, steady-state high salinity and low salinity brine experiments waterflood experiments were performed to compare the obtained relative permeability curves. The experiments were performed on a carbonate reservoir sample using a live reservoir crude oil under reservoir conditions. The test was designed so that the production and pressure drop curve covers a wider saturation range and provides enough data for analysis. Consequently, reliable relative permeability functions were obtained, initially, for a better comparison and prediction of the high salinity and the low salinity waterflood injections and then, to quantify the effect of low salinity waterflood under steady-state conditions. The results confirm the difference in relative permeability curves between high salinity and low salinity injections due to the micro-dispersion effect, which caused a decrease in water relative permeability and an increase in the oil relative permeability. These results also proved that low salinity brine can change the rock wettability from oil-wet or mixed-wet to more water-wet conditions. Furthermore, the obtained relative permeability curves extend across a substantial saturation range, making it valuable information required for numerical simulations. To the best of our knowledge, the reported data in this work is a pioneer in quantifying the impact of low salinity waterflood at steady-state conditions using a reservoir crude oil and reservoir rock, which is of utmost importance for the oil and gas industry.


2021 ◽  
pp. 111821
Author(s):  
Márcio Gonçalves ◽  
Nuno Simões ◽  
Catarina Serra ◽  
Inês-Flores-Colen ◽  
Kenny Rottenbacher ◽  
...  

2021 ◽  
Vol 2131 (5) ◽  
pp. 052073
Author(s):  
Z Zhou ◽  
K P Zubarev

Abstract This article is devoted to the development of methods for calculating heat and humidity regime in the building envelope. The equation of steady-state thermal conductivity with boundary conditions of the third kind and the formula for calculating heat losses of a building based on the heat transfer equation have been considered. The equation of unsteady-state thermal conductivity as well as its solution using the discrete-continual approach has also been studied. The solution of the unsteady-state heat conductivity problem with invariable over time boundary conditions using the discrete-continuous approach was proposed by A.B. Zolotov and P.A. Akimov. The subsequent modernization of the solution was conducted by V.N. Sidorov and S.M. Matskevich. The unsteady-state equation of moisture transfer based on Fick’s second law using the theory of moisture potential is derived. The solution of the unsteady-state moisture transfer equation using the finite difference method according to an explicit difference scheme as well as the solution of the unsteady-state moisture transfer equation using the discrete-continuous approach is demonstrated. To prove the effectiveness of using the discrete-continuous approach in the area of the unsteady-state humidity conditions we compared the calculation results of the distribution of moisture in a single-layer enclosing structure made of aerated concrete using two methods of moisture potential theory. It was found that the difference in the results of calculation by the discrete-continual formula and by the method of finite differences does not exceed 3.2%.


Author(s):  
Vincenzo Fazio ◽  
Vito Acito ◽  
Fabien Amiot ◽  
Christian Frétigny ◽  
Antoine Chateauminois

We report on memory effects involved in the unsteady-state frictional response of a contact interface between a silicone rubber and a spherical glass probe when it is perturbed by changes in the orientation of the driving motion or by velocity steps. From measurements of the displacement fields at the interface, we show that observed memory effects can be accounted for by the non-uniform distribution of the sliding velocity within the contact interface. As a consequence of these memory effects, the friction force may no longer be aligned with respect to the sliding trajectory. In addition, stick–slip motions with a purely geometrical origin are also evidenced. These observations are adequately accounted for by a friction model that takes into account heterogeneous displacements within the contact area. When a velocity dependence of the frictional stress is incorporated in this model, unsteady-state regimes induced by velocity steps are also adequately described. The good agreement between the model and experiments outlines the role of space heterogeneities in memory effects involved in soft matter friction.


2021 ◽  
pp. 117405
Author(s):  
Dominik Meyer ◽  
Jens Friedland ◽  
Jannik Schumacher ◽  
Max G. Gäßler ◽  
Robert Güttel

Sign in / Sign up

Export Citation Format

Share Document