scholarly journals The Existence Result for a Class of p-Kirchhoff-Type Problem with a Multilinear Growth Nonlinearity

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jiangyan Yao ◽  
Wei Han

In this paper, we firstly discuss the existence of the least energy sign-changing solutions for a class of p-Kirchhoff-type problems with a (2p-1)-linear growth nonlinearity. The quantitative deformation lemma and Non-Nehari manifold method are used in the paper to prove the main results. Remarkably, we use a new method to verify that Mb≠∅. The main results of our paper are the existence of the least energy sign-changing solution and its corresponding energy doubling property. Moreover, we also give the convergence property of the least energy sign-changing solution as the parameter b↘0.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Xiao ◽  
Canlin Gan ◽  
Qiongfen Zhang

In this paper, we study the Kirchhoff-type equation: − a + b ∫ ℝ 3     ∇ u 2 d x Δ u + V x u = Q x f u , in   ℝ 3 , where a , b > 0 , f ∈ C 1 ℝ 3 , ℝ , and V , Q ∈ C 1 ℝ 3 , ℝ + . V x and Q x are vanishing at infinity. With the aid of the quantitative deformation lemma and constraint variational method, we prove the existence of a sign-changing solution u to the above equation. Moreover, we obtain that the sign-changing solution u has exactly two nodal domains. Our results can be seen as an improvement of the previous literature.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Cun-bin An ◽  
Jiangyan Yao ◽  
Wei Han

In this paper, we study a class of the Kirchhoff-Schrödinger-Poisson system. By using the quantitative deformation lemma and degree theory, the existence result of the least energy sign-changing solution u0 is obtained. Meanwhile, the energy doubling property is proved, that is, we prove that the energy of any sign-changing solution is strictly larger than twice that of the least energy. Moreover, we also get the convergence properties of u0 as the parameters b↘0 and λ↘0.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-676 ◽  
Author(s):  
Xiao-Jing Zhong ◽  
Chun-Lei Tang

AbstractIn this paper, we investigate a class of Kirchhoff type problems in {\mathbb{R}^{3}} involving a critical nonlinearity, namely,-\biggl{(}1+b\int_{\mathbb{R}^{3}}\lvert\nabla u|^{2}\,dx\biggr{)}\triangle u=% \lambda f(x)u+|u|^{4}u,\quad u\in D^{1,2}(\mathbb{R}^{3}),where {b>0}, {\lambda>\lambda_{1}} and {\lambda_{1}} is the principal eigenvalue of {-\triangle u=\lambda f(x)u}, {u\in D^{1,2}(\mathbb{R}^{3})}. We prove that there exists {\delta>0} such that the above problem has at least two positive solutions for {\lambda_{1}<\lambda<\lambda_{1}+\delta}. Furthermore, we obtain the existence of ground state solutions. Our tools are the Nehari manifold and the concentration compactness principle. This paper can be regarded as an extension of Naimen’s work [21].


Author(s):  
Mohammed Massar

AbstractIn this work, we are concerned with a class of fractional equations of Kirchhoff type with potential. Using variational methods and a variant of quantitative deformation lemma, we prove the existence of a least energy sign-changing solution. Moreover, the existence of infinitely many solution is established.


2020 ◽  
pp. 1-26
Author(s):  
Teresa Isernia ◽  
Dušan D. Repovš

We consider the following ( p , q )-Laplacian Kirchhoff type problem − ( a + b ∫ R 3 | ∇ u | p d x ) Δ p u − ( c + d ∫ R 3 | ∇ u | q d x ) Δ q u + V ( x ) ( | u | p − 2 u + | u | q − 2 u ) = K ( x ) f ( u ) in  R 3 , where a , b , c , d > 0 are constants, 3 2 < p < q < 3, V : R 3 → R and K : R 3 → R are positive continuous functions allowed for vanishing behavior at infinity, and f is a continuous function with quasicritical growth. Using a minimization argument and a quantitative deformation lemma we establish the existence of nodal solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yuan Gao ◽  
Lishan Liu ◽  
Shixia Luan ◽  
Yonghong Wu

AbstractA Kirchhoff-type problem with concave-convex nonlinearities is studied. By constrained variational methods on a Nehari manifold, we prove that this problem has a sign-changing solution with least energy. Moreover, we show that the energy level of this sign-changing solution is strictly larger than the double energy level of the ground state solution.


2019 ◽  
Vol 19 (1) ◽  
pp. 113-132 ◽  
Author(s):  
Vincenzo Ambrosio ◽  
Giovany M. Figueiredo ◽  
Teresa Isernia ◽  
Giovanni Molica Bisci

Abstract We consider the following class of fractional Schrödinger equations: (-\Delta)^{\alpha}u+V(x)u=K(x)f(u)\quad\text{in }\mathbb{R}^{N}, where {\alpha\in(0,1)} , {N>2\alpha} , {(-\Delta)^{\alpha}} is the fractional Laplacian, V and K are positive continuous functions which vanish at infinity, and f is a continuous function. By using a minimization argument and a quantitative deformation lemma, we obtain the existence of a sign-changing solution. Furthermore, when f is odd, we prove that the above problem admits infinitely many nontrivial solutions. Our result extends to the fractional framework some well-known theorems proved for elliptic equations in the classical setting. With respect to these cases studied in the literature, the nonlocal one considered here presents some additional difficulties, such as the lack of decompositions involving positive and negative parts, and the non-differentiability of the Nehari Manifold, so that a careful analysis of the fractional spaces involved is necessary.


Sign in / Sign up

Export Citation Format

Share Document