multiple positive solutions
Recently Published Documents


TOTAL DOCUMENTS

585
(FIVE YEARS 79)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
pp. 598-619
Author(s):  
Guofeng Che ◽  
Tsung-fang Wu

Abstract We study the following Kirchhoff type equation: − a + b ∫ R N | ∇ u | 2 d x Δ u + u = k ( x ) | u | p − 2 u + m ( x ) | u | q − 2 u     in     R N , $$\begin{equation*}\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u+u =k(x)|u|^{p-2}u+m(x)|u|^{q-2}u~~\text{in}~~\mathbb{R}^{N}, \end{array} \end{equation*}$$ where N=3, a , b > 0 $ a,b \gt 0 $ , 1 < q < 2 < p < min { 4 , 2 ∗ } $ 1 \lt q \lt 2 \lt p \lt \min\{4, 2^{*}\} $ , 2≤=2N/(N − 2), k ∈ C (ℝ N ) is bounded and m ∈ L p/(p−q)(ℝ N ). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding H 1 ( R N ) ↪ L r ( R N ) ( 2 ≤ r < 2 ∗ ) $ H^{1}(\mathbb{R}^{N})\hookrightarrow L^{r}(\mathbb{R}^{N}) (2\leq r \lt 2^{*}) $ ; then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yongyang Liu ◽  
Yansheng Liu

This paper is mainly concerned with a class of fractional p , q -difference equations under p , q -integral boundary conditions. Multiple positive solutions are established by using the topological degree theory and Krein–Rutman theorem. Finally, two examples are worked out to illustrate the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sabbavarapu Nageswara Rao ◽  
Abdullah Ali H. Ahmadini

AbstractIn this article, we are pleased to investigate multiple positive solutions for a system of Hadamard fractional differential equations with $(p_{1}, p_{2}, p_{3})$ ( p 1 , p 2 , p 3 ) -Laplacian operator. The main results rely on the standard tools of different fixed point theorems. Finally, we demonstrate the application of the obtained results with the aid of examples.


2021 ◽  
Vol 11 (1) ◽  
pp. 432-453
Author(s):  
Qi Han

Abstract In this work, we study the existence of a positive solution to an elliptic equation involving the fractional Laplacian (−Δ) s in ℝ n , for n ≥ 2, such as (0.1) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = K ( x ) f ( u ) + u 2 s ⋆ − 1 . $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=K(x) f(u)+u^{2_{s}^{\star}-1}.$$ Here, s ∈ (0, 1), q ∈ 2 , 2 s ⋆ $q \in\left[2,2_{s}^{\star}\right)$ with 2 s ⋆ := 2 n n − 2 s $2_{s}^{\star}:=\frac{2 n}{n-2 s}$ being the fractional critical Sobolev exponent, E(x), K(x), V(x) > 0 : ℝ n → ℝ are measurable functions which satisfy joint “vanishing at infinity” conditions in a measure-theoretic sense, and f (u) is a continuous function on ℝ of quasi-critical, super-q-linear growth with f (u) ≥ 0 if u ≥ 0. Besides, we study the existence of multiple positive solutions to an elliptic equation in ℝ n such as (0.2) ( − Δ ) s u + E ( x ) u + V ( x ) u q − 1 = λ K ( x ) u r − 1 , $$(-\Delta)^{s} u+E(x) u+V(x) u^{q-1}=\lambda K(x) u^{r-1},$$ where 2 < r < q < ∞(both possibly (super-)critical), E(x), K(x), V(x) > 0 : ℝ n → ℝ are measurable functions satisfying joint integrability conditions, and λ > 0 is a parameter. To study (0.1)-(0.2), we first describe a family of general fractional Sobolev-Slobodeckij spaces Ms ;q,p (ℝ n ) as well as their associated compact embedding results.


Author(s):  
Giuseppina Vannella

Let us consider the quasilinear problem [Formula: see text] where [Formula: see text] is a bounded domain in [Formula: see text] with smooth boundary, [Formula: see text], [Formula: see text], [Formula: see text] is a parameter and [Formula: see text] is a continuous function with [Formula: see text], having a subcritical growth. We prove that there exists [Formula: see text] such that, for every [Formula: see text], [Formula: see text] has at least [Formula: see text] solutions, possibly counted with their multiplicities, where [Formula: see text] is the Poincaré polynomial of [Formula: see text]. Using Morse techniques, we furnish an interpretation of the multiplicity of a solution, in terms of positive distinct solutions of a quasilinear equation on [Formula: see text], approximating [Formula: see text].


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shengjun Li ◽  
Fang Zhang

We study the existence of positive solutions for second-order nonlinear repulsive singular difference systems with periodic boundary conditions. Our nonlinearity may be singular in its dependent variable. The proof of the main result relies on a fixed point theorem in cones and a nonlinear alternative principle of Leray-Schauder; the result is applicable to the case of a weak singularity as well as the case of a strong singularity. An example is given; some recent results in the literature are improved and generalized.


Sign in / Sign up

Export Citation Format

Share Document