nodal domains
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Marvin Plümer ◽  
Matthias Täufer

AbstractWe prove that every metric graph which is a tree has an orthonormal sequence of generic Laplace-eigenfunctions, that are eigenfunctions corresponding to eigenvalues of multiplicity one and which have full support. This implies that the number of nodal domains $$\nu _n$$ ν n of the n-th eigenfunction of the Laplacian with standard conditions satisfies $$\nu _n/n \rightarrow 1$$ ν n / n → 1 along a subsequence and has previously only been known in special cases such as mutually rationally dependent or rationally independent side lengths. It shows in particular that the Pleijel nodal domain asymptotics from two- or higher dimensional domains cannot occur on these graphs: Despite their more complicated topology, they still behave as in the one-dimensional case. We prove an analogous result on general metric graphs under the condition that they have at least one Dirichlet vertex. Furthermore, we generalize our results to Delta vertex conditions and to edgewise constant potentials. The main technical contribution is a new expression for a secular function in which modifications to the graph, to vertex conditions, and to the potential are particularly easy to understand.



Author(s):  
Hui Guo ◽  
Ronghua Tang ◽  
Tao Wang

This paper deals with the following Schr\“odinger-Poisson system \begin{equation}\left\{\begin{aligned} &-\Delta u+u+ \lambda\phi u=f(u)\quad\mbox{in }\mathbb{R}^3,\\ &-\Delta \phi=u^{2}\quad\mbox{in }\mathbb{R}^3, \end{aligned}\right.\end{equation} where $\lambda>0$ and $f(u)$ is a nonlinear term asymptotically cubic at the infinity. Taking advantage of the Miranda theorem and deformation lemma, we combine some new analytic techniques to prove that for each positive integer $k,$ system \eqref{zhaiyaofc} admits a radial nodal solution $U_k^{\lambda}$, which has exactly $k+1$ nodal domains and the corresponding energy is strictly increasing in $k$. Moreover, for any sequence $\{\lambda_n\}\to 0_+$ as $n\to\infty,$ up to a subsequence, $U_k^{\lambda_n}$ converges to some $U_k^0\in H_r^1(\mathbb{R}^3)$, which is a radial nodal solution with exactly $k+1$ nodal domains of \eqref{zhaiyaofc} for $\lambda=0 $. These results give an affirmative answer to the open problem proposed in [Kim S, Seok J. Commun. Contemp. Math., 2012] for the Schr\”odinger-Poisson system with an asymptotically cubic term.



Author(s):  
Matthias Hofmann ◽  
James B. Kennedy ◽  
Delio Mugnolo ◽  
Marvin Plümer

AbstractWe establish metric graph counterparts of Pleijel’s theorem on the asymptotics of the number of nodal domains $$\nu _n$$ ν n of the nth eigenfunction(s) of a broad class of operators on compact metric graphs, including Schrödinger operators with $$L^1$$ L 1 -potentials and a variety of vertex conditions as well as the p-Laplacian with natural vertex conditions, and without any assumptions on the lengths of the edges, the topology of the graph, or the behaviour of the eigenfunctions at the vertices. Among other things, these results characterise the accumulation points of the sequence $$(\frac{\nu _n}{n})_{n\in \mathbb {N}}$$ ( ν n n ) n ∈ N , which are shown always to form a finite subset of (0, 1]. This extends the previously known result that $$\nu _n\sim n$$ ν n ∼ n generically, for certain realisations of the Laplacian, in several directions. In particular, in the special cases of the Laplacian with natural conditions, we show that for graphs any graph with pairwise commensurable edge lengths and at least one cycle, one can find eigenfunctions thereon for which $${\nu _n}\not \sim {n}$$ ν n ≁ n ; but in this case even the set of points of accumulation may depend on the choice of eigenbasis.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Xiao ◽  
Canlin Gan ◽  
Qiongfen Zhang

In this paper, we study the Kirchhoff-type equation: − a + b ∫ ℝ 3     ∇ u 2 d x Δ u + V x u = Q x f u , in   ℝ 3 , where a , b > 0 , f ∈ C 1 ℝ 3 , ℝ , and V , Q ∈ C 1 ℝ 3 , ℝ + . V x and Q x are vanishing at infinity. With the aid of the quantitative deformation lemma and constraint variational method, we prove the existence of a sign-changing solution u to the above equation. Moreover, we obtain that the sign-changing solution u has exactly two nodal domains. Our results can be seen as an improvement of the previous literature.



Author(s):  
Kazuaki Tanaka

AbstractThis paper proposes a method for rigorously analyzing the sign-change structure of solutions of elliptic partial differential equations subject to one of the three types of homogeneous boundary conditions: Dirichlet, Neumann, and mixed. Given explicitly estimated error bounds between an exact solution u and a numerically computed approximate solution $${\hat{u}}$$ u ^ , we evaluate the number of sign-changes of u (the number of nodal domains) and determine the location of zero level-sets of u (the location of the nodal line). We apply this method to the Dirichlet problem of the Allen–Cahn equation. The nodal line of solutions of this equation represents the interface between two coexisting phases.



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jianqing Chen ◽  
Qian Zhang

<p style='text-indent:20px;'>This paper is concerned with the following quasilinear Schrödinger system in the entire space <inline-formula><tex-math id="M1">\begin{document}$ \mathbb R^{N}(N\geq3) $\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{aligned} &amp;-\Delta u+A(x)u+\frac{k}{2}\triangle(u^{2})u = \frac{2\alpha }{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\\ &amp;-\Delta v+Bv+\frac{k}{2}\triangle(v^{2})v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v,\\ &amp; u(x)\to 0,\ \ v(x)\to 0\ \ \hbox{as}\ |x|\to \infty,\end{aligned}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ \alpha,\beta&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 2&lt;\alpha+\beta&lt;2^* = \frac{2N}{N-2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ k &gt;0 $\end{document}</tex-math></inline-formula> is a parameter. By using the principle of symmetric criticality and the moser iteration, for any given integer <inline-formula><tex-math id="M5">\begin{document}$ \xi\geq2 $\end{document}</tex-math></inline-formula>, we construct a non-radially symmetrical nodal solution with its <inline-formula><tex-math id="M6">\begin{document}$ 2\xi $\end{document}</tex-math></inline-formula> nodal domains. Our results can be looked on as a generalization to results by Alves, Wang and Shen (Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259 (2015) 318-343).</p>



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mónica Clapp ◽  
Angela Pistoia

<p style='text-indent:20px;'>We prove the existence of regular optimal <inline-formula><tex-math id="M1">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant partitions, with an arbitrary number <inline-formula><tex-math id="M2">\begin{document}$ \ell\geq 2 $\end{document}</tex-math></inline-formula> of components, for the Yamabe equation on a closed Riemannian manifold <inline-formula><tex-math id="M3">\begin{document}$ (M,g) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M4">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a compact group of isometries of <inline-formula><tex-math id="M5">\begin{document}$ M $\end{document}</tex-math></inline-formula> with infinite orbits. To this aim, we study a weakly coupled competitive elliptic system of <inline-formula><tex-math id="M6">\begin{document}$ \ell $\end{document}</tex-math></inline-formula> equations, related to the Yamabe equation. We show that this system has a least energy <inline-formula><tex-math id="M7">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant solution with nontrivial components and we show that the limit profiles of its components separate spatially as the competition parameter goes to <inline-formula><tex-math id="M8">\begin{document}$ -\infty $\end{document}</tex-math></inline-formula>, giving rise to an optimal partition. For <inline-formula><tex-math id="M9">\begin{document}$ \ell = 2 $\end{document}</tex-math></inline-formula> the optimal partition obtained yields a least energy sign-changing <inline-formula><tex-math id="M10">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant solution to the Yamabe equation with precisely two nodal domains.</p>



2020 ◽  
Vol 61 (12) ◽  
pp. 123302
Author(s):  
Fedor Nazarov ◽  
Mikhail Sodin
Keyword(s):  


2020 ◽  
Vol 279 (8) ◽  
pp. 108663
Author(s):  
Andrea Sartori
Keyword(s):  


2020 ◽  
Vol 70 (3) ◽  
pp. 971-1027
Author(s):  
Junehyuk Jung ◽  
Steve Zelditch
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document