scholarly journals Short-Term Load Forecasting with Improved CEEMDAN and GWO-Based Multiple Kernel ELM

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Taiyong Li ◽  
Zijie Qian ◽  
Ting He

Short-term load forecasting (STLF) is an essential and challenging task for power- or energy-providing companies. Recent research has demonstrated that a framework called “decomposition and ensemble” is very powerful for energy forecasting. To improve the effectiveness of STLF, this paper proposes a novel approach integrating the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), grey wolf optimization (GWO), and multiple kernel extreme learning machine (MKELM), namely, ICEEMDAN-GWO-MKELM, for STLF, following this framework. The proposed ICEEMDAN-GWO-MKELM consists of three stages. First, the complex raw load data are decomposed into a couple of relatively simple components by ICEEMDAN. Second, MKELM is used to forecast each decomposed component individually. Specifically, we use GWO to optimize both the weight and the parameters of every single kernel in extreme learning machine to improve the forecasting ability. Finally, the results of all the components are aggregated as the final forecasting result. The extensive experiments reveal that the ICEEMDAN-GWO-MKELM can outperform several state-of-the-art forecasting approaches in terms of some evaluation criteria, showing that the ICEEMDAN-GWO-MKELM is very effective for STLF.

2017 ◽  
Vol 240 ◽  
pp. 175-182 ◽  
Author(s):  
Nianyin Zeng ◽  
Hong Zhang ◽  
Weibo Liu ◽  
Jinling Liang ◽  
Fuad E. Alsaadi

Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document