scholarly journals A Novel Numerical Procedure for Simulating Steady MHD Convective Flows of Radiative Casson Fluids over a Horizontal Stretching Sheet with Irregular Geometry under the Combined Influence of Temperature-Dependent Viscosity and Thermal Conductivity

2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Abderrahim Wakif

A novel mathematical computing analysis for steady magnetohydrodynamic convective flows of radiative Casson fluids moving over a nonlinearly elongating elastic sheet with a nonuniform thickness is established successfully in this numerical exploration. Also, the significance of an externally applied magnetic field with space-dependent strength on the development of MHD convective flows of Casson viscoplastic fluids is evaluated thoroughly by including the momentous influence of linear thermal radiation along with the temperature-dependent viscosity and thermal conductivity effects. By combining the assumption of the low-inducing magnetic field with the boundary layer approximations, the governing partial differential equations monitoring the current flow model are transmuted accordingly into a set of nonlinear coupled ordinary differential equations by invoking appropriate similarity transformations. Moreover, these derived differential equations are resolved numerically by utilizing a new innovative GDQLLM algorithm integrating the local linearization technique with the generalized differential quadrature method. On the other hand, the behaviours of velocity and temperature fields are deliberated properly through various graphical illustrations and different sets of flow parameters. However, the accurate datasets generated for the skin friction coefficient and local Nusselt number are presented separately in tabular displays, whose physical insights are discussed comprehensively via the slope linear regression method (SLRM). As main results, it is demonstrated that the higher values of the Casson viscoplastic parameter reduce significantly the fluid velocity within the boundary layer region, while a partial reverse tendency is observed near the stretching sheet as long as the wall thickness parameter is increased. Besides the previously mentioned hydrodynamical features, it is also depicted that the thermal field throughout the medium is enhanced considerably with the elevating values of these parameters.

2010 ◽  
Vol 15 (3) ◽  
pp. 257-270 ◽  
Author(s):  
M. M. M. Abdou

A numerical model is developed to study the effect of thermal radiation on unsteady boundary layer flow with temperature dependent viscosity and thermal conductivity due to a stretching sheet in porous media. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. The governing equations reduced to similarity boundary layer equations using suitable transformations and then solved using the Runge–Kutta numerical integration, procedure in conjunction with shooting technique. A parametric study illustrating the influence of the radiation R, variable viscosity ε, Darcy number Da, porous media inertia coefficient γ, thermal conductivity κ and unsteady A parameters on skin friction and Nusselt number.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 867-876 ◽  
Author(s):  
Sajid Hussain ◽  
Asim Aziz ◽  
Chaudhry Masood Khalique ◽  
Taha Aziz

AbstractIn this paper, a numerical investigation is carried out to study the effect of temperature dependent viscosity and thermal conductivity on heat transfer and slip flow of electrically conducting non-Newtonian nanofluids. The power-law model is considered for water based nanofluids and a magnetic field is applied in the transverse direction to the flow. The governing partial differential equations(PDEs) along with the slip boundary conditions are transformed into ordinary differential equations(ODEs) using a similarity technique. The resulting ODEs are numerically solved by using fourth order Runge-Kutta and shooting methods. Numerical computations for the velocity and temperature profiles, the skin friction coefficient and the Nusselt number are presented in the form of graphs and tables. The velocity gradient at the boundary is highest for pseudoplastic fluids followed by Newtonian and then dilatant fluids. Increasing the viscosity of the nanofluid and the volume of nanoparticles reduces the rate of heat transfer and enhances the thickness of the momentum boundary layer. The increase in strength of the applied transverse magnetic field and suction velocity increases fluid motion and decreases the temperature distribution within the boundary layer. Increase in the slip velocity enhances the rate of heat transfer whereas thermal slip reduces the rate of heat transfer.


Sign in / Sign up

Export Citation Format

Share Document