thermal diffusion
Recently Published Documents


TOTAL DOCUMENTS

2932
(FIVE YEARS 250)

H-INDEX

67
(FIVE YEARS 6)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shingo Kariya ◽  
Takashi Matsumae ◽  
Yuichi Kurashima ◽  
Hideki Takagi ◽  
Masanori Hayase ◽  
...  

AbstractIn this study, we developed a metal multilayer that can provide hermetic sealing after degassing the assemblies and absorbing the residual gases in the package. A package without a leak path was obtained by the direct bonding of the Au/Pt/Ti layers. After packaging, annealing at 450 °C caused thermal diffusion of the Ti underlayer atoms to the inner surface, which led to absorption of the residual gas molecules. These results indicated that a wafer coated with a Au/Pt/Ti layer can provide hermetic sealing and absorb residual gases, which can simplify vacuum packaging processes in the electronics industry.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiaxin Li ◽  
Ying Li ◽  
Pei-Chao Cao ◽  
Minghong Qi ◽  
Xu Zheng ◽  
...  

AbstractThe reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Md Maruful Islam ◽  
Toshiyuki Yoshida ◽  
Yasuhisa Fujita

Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.


2021 ◽  
pp. 2103547
Author(s):  
Dong‐Wei Ao ◽  
Wei‐Di Liu ◽  
Yue‐Xing Chen ◽  
Meng Wei ◽  
Bushra Jabar ◽  
...  

Author(s):  
Dongjuan Niu ◽  
Huiru Wu

In this article, we study the global well-posedness and large-time behaviors of solutions to the two-dimensional tropical climate system with zero thermal diffusion for a small initial data in the whole space. The main approaches include high and low frequency decomposition method and exploiting the structure of system (1) to obtain the estimates of thermal dissipation. We utilize the time decay properties of the kernels to a linear differential equation to obtain the decay rates of solutions of the low frequency part and the decay property of exponential operator for the high frequency part. The key ingredient here is the explicit large-time decay rate of solutions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Eghbalahmadi ◽  
Parissa Khadiv-Parsi ◽  
Seyed Mohammad Ali Mousavian ◽  
Mohammad Hosein Eghbal Ahmadi

Abstract In this study, numerical simulations were carried out to investigate the separation of the helium-argon gas mixture by thermal diffusion column. This research determined the significant parameters and their effects on the process performance. Effects of feed flow rate, cut ratio, and hot wire temperature in a 950 mm height column with an inner tube of 9.5 mm radius were examined through the simulation of the thermal diffusion column. For minimizing the number of simulations and obtaining the optimum operating conditions, response surface methodology (RSM) was used. Analysis of separative work unit (SWU) values as a target function for helium-argon separation clearly showed that the maximum amount of SWU in thermal diffusion column was achieved, when hot wire temperature increased as large as technically possible, and the feed rate and cut ratio were equal to 55 Standard Cubic Centimeters per Minute (SCCM) and 0.44, respectively. Finally, the SWU value in optimum conditions was compared with the experimental data. Results illustrated that the experimental data were in good agreement with simulation data with an accuracy of about 90%.


Sign in / Sign up

Export Citation Format

Share Document