scholarly journals The Influence of Cochlear Implant-Based Electric Stimulation on the Electrophysiological Characteristics of Cultured Spiral Ganglion Neurons

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Na Shen ◽  
Lei Zhou ◽  
Bin Lai ◽  
Shufeng Li

Background. Cochlear implant-based electrical stimulation may be an important reason to induce the residual hearing loss after cochlear implantation. In our previous study, we found that charge-balanced biphasic electrical stimulation inhibited the neurite growth of spiral ganglion neurons (SGNs) and decreased Schwann cell density in vitro. In this study, we want to know whether cochlear implant-based electrical stimulation can induce the change of electrical activity in cultured SGNs. Methods. Spiral ganglion neuron electrical stimulation in vitro model is established using the devices delivering cochlear implant-based electrical stimulation. After 48 h treatment by 50 μA or 100 μA electrical stimulation, the action potential (AP) and voltage depended calcium current (ICa) of SGNs are recorded using whole-cell electrophysiological method. Results. The results show that the ICa of SGNs is decreased significantly in 50 μA and 100 μA electrical stimulation groups. The reversal potential of ICa is nearly +80 mV in control SGN, but the reversal potential decreases to +50 mV in 50 μA and 100 μA electrical stimulation groups. Interestingly, the AP amplitude, the AP latency, and the AP duration of SGNs have no statistically significant differences in all three groups. Conclusion. Our study suggests cochlear implant-based electrical stimulation only significantly inhibit the ICa of cultured SGNs but has no effect on the firing of AP, and the relation of ICa inhibition and SGN damage induced by electrical stimulation and its mechanism needs to be further studied.

2019 ◽  
Vol 36 (1) ◽  
pp. 217-217
Author(s):  
Marvin N. Peter ◽  
Athanasia Warnecke ◽  
Uta Reich ◽  
Heidi Olze ◽  
Agnieszka J. Szczepek ◽  
...  

2019 ◽  
Vol 36 (1) ◽  
pp. 204-216 ◽  
Author(s):  
Marvin N. Peter ◽  
Athanasia Warnecke ◽  
Uta Reich ◽  
Heidi Olze ◽  
Agnieszka J. Szczepek ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Yong Fu ◽  
Dalian Ding ◽  
Lei Wei ◽  
Haiyan Jiang ◽  
Richard Salvi

Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochleain vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabainin vivovaried among mammalian species. Little is known about the ototoxic effectsin vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabainin vitroand to provide insights that could explain the comparative ototoxic effects of ouabainin vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damagein vitrowas dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways.


2013 ◽  
Vol 75 ◽  
pp. 416-425 ◽  
Author(s):  
Odett Kaiser ◽  
Gerrit Paasche ◽  
Timo Stöver ◽  
Stefanie Ernst ◽  
Thomas Lenarz ◽  
...  

Author(s):  
Jeong Han Lee ◽  
Choongryoul Sihn ◽  
Wanging Wang ◽  
Cristina Maria Perez Flores ◽  
Ebenezer N. Yamoah

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fei Sun ◽  
Ke Zhou ◽  
Ke-yong Tian ◽  
Jie Wang ◽  
Jian-hua Qiu ◽  
...  

The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.


Sign in / Sign up

Export Citation Format

Share Document