neurite outgrowth
Recently Published Documents


TOTAL DOCUMENTS

3557
(FIVE YEARS 391)

H-INDEX

132
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Min Kwon ◽  
Yeojin Seo ◽  
Hana Cho ◽  
Jihye Choi ◽  
Hyung Soon Kim ◽  
...  

Preconditioning peripheral nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these regeneration-associated macrophages influence the neuronal capacity of axon regeneration remains elusive. The present study reports that oncomodulin (ONCM) is an effector molecule derived from the regeneration-associated macrophages. ONCM was highly upregulated in DRG macrophages following preconditioning injury and necessary for the preconditioning-induced neurite outgrowth. ONCM-deficient macrophages failed to generate neurite outgrowth activity of the conditioned medium in the in vitro model of neuron-macrophage interaction. CCL2/CCR2 signaling is an upstream regulator of ONCM since the ONCM upregulation was dependent on CCR2 and CCL2 overexpression-mediated conditioning effects were attenuated in ONCM-deficient mice. Direct application of ONCM potently increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. AAV-mediated overexpression of ONCM construct with the signal sequence increased neuronal secretion of ONCM and enhanced neurite outgrowth in an autocrine manner. For a clinically relevant approach, we developed a nanogel-mediated system for localized delivery of recombinant ONCM to DRG tissue. Electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) resulted in a slow release of ONCM allowing sustained bioactivity. Intraganglionic injection of REPL-NG/ONCM complex achieved a remarkable long-range axonal regeneration beyond spinal cord lesion, surpassing the extent expected from the preconditioning effects. The NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Marta R. Casanova ◽  
Rui L. Reis ◽  
Albino Martins ◽  
Nuno M. Neves

Peripheral nerve injury still remains a major clinical challenge, since the available solutions lead to dysfunctional nerve regeneration. Even though autologous nerve grafts are the gold standard, tissue engineered nerve guidance grafts are valid alternatives. Nerve growth factor (NGF) is the most potent neurotrophic factor. The development of a nerve guidance graft able to locally potentiate the interaction between injured neurons and autologous NGF would be a safer and more effective alternative to grafts that just release NGF. Herein, a biofunctional electrospun fibrous mesh (eFM) was developed through the selective retrieval of NGF from rat blood plasma. The neurite outgrowth induced by the eFM-NGF systems was assessed by culturing rat pheochromocytoma (PC12) cells for 7 days, without medium supplementation. The biological results showed that this NGF delivery system stimulates neuronal differentiation, enhancing the neurite growth more than the control condition.


2021 ◽  
Author(s):  
Yu Wang ◽  
Feng Jia ◽  
Yong Lin

Abstract Several transport vectors, including nanoparticles, have been reported to be used for the delivery of therapeutic medicines crossing the impermeable blood-brain barrier (BBB) to treat the diseases in the central nerve system (CNS), such as traumatic brain injury (TBI). Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles, made from biocompatible material, are regarded as a better potential delivery tool than others such as gold nanoparticles due to their degradability in vivo. However, little is known whether PBCA nanoparticles can be used to deliver neurotrophic factors into the brain to treat TBI. In this study, we first synthesized PBCA-carried β-nerve growth factor, a neurotrophic agent with a large molecular weight, and then intravenously injected the compound into TBI rats. We found that despite undergoing several synthesis steps and host circulation, β-NGF was able to be successfully delivered into the injured brain by PBCA nanoparticles, still maintain its neurotrophic activity for neurite outgrowth, and could reduce the mortality of TBI rats. Our findings indicate that PBCA nanoparticles, with Tween 80, are an efficient delivery vector and a protective reservoir for large molecular therapeutic agents to treat TBI intravenously.


2021 ◽  
Vol 15 ◽  
Author(s):  
James Hong ◽  
Rachel Dragas ◽  
Mohammad Khazaei ◽  
Christopher S. Ahuja ◽  
Michael G. Fehlings

The astroglial scar is a defining hallmark of secondary pathology following central nervous system (CNS) injury that, despite its role in limiting tissue damage, presents a significant barrier to neuroregeneration. Neural progenitor cell (NPC) therapies for tissue repair and regeneration have demonstrated favorable outcomes, the effects of which are ascribed not only to direct cell replacement but trophic support. Cytokines and growth factors secreted by NPCs aid in modifying the inhibitory and cytotoxic post-injury microenvironment. In an effort to harness and enhance the reparative potential of NPC secretome, we utilized the multifunctional and pro-regenerative cytokine, hepatocyte growth factor (HGF), as a cellular preconditioning agent. We first demonstrated the capacity of HGF to promote NPC survival in the presence of oxidative stress. We then assessed the capacity of this modified conditioned media (CM) to attenuate astrocyte reactivity and promote neurite outgrowth in vitro. HGF pre-conditioned NPCs demonstrated significantly increased levels of tissue inhibitor of metalloproteinases-1 and reduced vascular endothelial growth factor compared to untreated NPCs. In reactive astrocytes, HGF-enhanced NPC-CM effectively reduced glial fibrillary acidic protein (GFAP) expression and chondroitin sulfate proteoglycan deposition to a greater extent than either treatment alone, and enhanced neurite outgrowth of co-cultured neurons. in vivo, this combinatorial treatment strategy might enable tactical modification of the post-injury inhibitory astroglial environment to one that is more conducive to regeneration and functional recovery. These findings have important translational implications for the optimization of current cell-based therapies for CNS injury.


2021 ◽  
Vol 65 (4) ◽  
Author(s):  
Jianyu Zou ◽  
Zhenbin Cai ◽  
Zhi Liang ◽  
Yaozhong Liang ◽  
Guowei Zhang ◽  
...  

Spastin is one of the proteins which lead to hereditary spastic paraplegia (HSP), whose dysfunction towards microtubule severing and membrane transporting is critically important. The present study is to elucidate the mechanisms of the protein stability regulation of spastin. The ubiquitin encoding plasmids are transfected into COS-7 cells with different fusion tags including Green Fluorescent Protein (GFP), mCherry and Flag. The expression level of spastin was detected, microtubule severing activity and neurite outgrowth were quantified. The data showed that ubiquitin overexpression significantly induced the decreased expression of spastin, suppressed the activity of microtubule severing in COS-7 cells and inhibited the promoting effect on neurite outgrowth in cultured hippocampal neurons. Furthermore, when modulating the overexpression experiments of ubiquitin, it was found that relatively small tag like Flag, but not large tags such as GFP or mCherry fused with ubiquitin, retained the activity on spastin stability. The present study investigated the effects of small/large tags addition to ubiquitin and the novel mechanisms of post-transcriptional modifications of spastin on regulating neurite outgrowth, in the attempt to experimentally elucidate the mechanisms that control the level or stability of spastin in hereditary spastic paraplegia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalia Kulesskaya ◽  
Dmitry Molotkov ◽  
Sonny Sliepen ◽  
Ekaterina Mugantseva ◽  
Arturo Garcia Horsman ◽  
...  

Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models. In vivo imaging of blood-oxygen-level-dependent (BOLD) signals associated with functional activity in the somatosensory cortex was used to assess the sensory functions during vibrotactile hind paw stimulation. The signal displays an exaggerated response in animals with lateral hemisection that recovers to the level seen in the sham-operated mice by injection of HB-GAM to the trauma site. The effect of HB-GAM treatment on sensory-motor functions was assessed by performance in demanding behavioral tests requiring integration of afferent and efferent signaling with central coordination. Administration of HB-GAM either by direct injection into the trauma site or by intrathecal injection improves the climbing abilities in animals with cervical hemisection and in addition enhances the grip strength in animals with lateral hemicontusion without affecting the spontaneous locomotor activity. Recovery of sensory signaling in the sensorimotor cortex by HB-GAM to the level of sham-operated mice may contribute to the improvement of skilled locomotion requiring integration of spatiotemporal signals in the somatosensory cortex.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1814
Author(s):  
Takuya Kano ◽  
Ryosuke Tsumagari ◽  
Akio Nakashima ◽  
Ushio Kikkawa ◽  
Shuji Ueda ◽  
...  

Diacylglycerol kinase β (DGKβ) is an enzyme that converts diacylglycerol to phosphatidic acid and is mainly expressed in the cerebral cortex, hippocampus and striatum. We previously reported that DGKβ induces neurite outgrowth and spinogenesis, contributing to higher brain functions, including emotion and memory. To elucidate the mechanisms involved in neuronal development by DGKβ, we investigated the importance of DGKβ activity in the induction of neurite outgrowth using human neuroblastoma SH-SY5Y cells. Interestingly, both wild-type DGKβ and the kinase-negative (KN) mutant partially induced neurite outgrowth, and these functions shared a common pathway via the activation of mammalian target of rapamycin complex 1 (mTORC1). In addition, we found that DGKβ interacted with the small GTPase RalA and that siRNA against RalA and phospholipase D (PLD) inhibitor treatments abolished DGKβKN-induced neurite outgrowth. These results indicate that binding of RalA and activation of PLD and mTORC1 are involved in DGKβKN-induced neurite outgrowth. Taken together with our previous reports, mTORC1 is a key molecule in both kinase-dependent and kinase-independent pathways of DGKβ-mediated neurite outgrowth, which is important for higher brain functions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anusha Dravid ◽  
Brad Raos ◽  
Darren Svirskis ◽  
Simon J. O’Carroll

AbstractNeuronal models are a crucial tool in neuroscientific research, helping to elucidate the molecular and cellular processes involved in disorders of the nervous system. Adapting these models to a high-throughput format enables simultaneous screening of multiple agents within a single assay. SH-SY5Y cells have been widely used as a neuronal model, yet commonly in an undifferentiated state that is not representative of mature neurons. Differentiation of the SH-SY5Y cells is a necessary step to obtain cells that express mature neuronal markers. Despite this understanding, the absence of a standardised protocol has limited the use of differentiated SH-SY5Y cells in high-throughput assay formats. Here, we describe techniques to differentiate and re-plate SH-SY5Y cells within a 96-well plate for high-throughput screening. SH-SY5Y cells seeded at an initial density of 2,500 cells/well in a 96-well plate provide sufficient space for neurites to extend, without impacting cell viability. Room temperature pre-incubation for 1 h improved the plating homogeneity within the well and the ability to analyse neurites. We then demonstrated the efficacy of our techniques by optimising it further for neurite outgrowth analysis. The presented methods achieve homogenously distributed differentiated SH-SY5Y cells, useful for researchers using these cells in high-throughput screening assays.


Sign in / Sign up

Export Citation Format

Share Document