scholarly journals Multi/Many-Objective Particle Swarm Optimization Algorithm Based on Competition Mechanism

2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Wusi Yang ◽  
Li Chen ◽  
Yi Wang ◽  
Maosheng Zhang

The recently proposed multiobjective particle swarm optimization algorithm based on competition mechanism algorithm cannot effectively deal with many-objective optimization problems, which is characterized by relatively poor convergence and diversity, and long computing runtime. In this paper, a novel multi/many-objective particle swarm optimization algorithm based on competition mechanism is proposed, which maintains population diversity by the maximum and minimum angle between ordinary and extreme individuals. And the recently proposed θ-dominance is adopted to further enhance the performance of the algorithm. The proposed algorithm is evaluated on the standard benchmark problems DTLZ, WFG, and UF1-9 and compared with the four recently proposed multiobjective particle swarm optimization algorithms and four state-of-the-art many-objective evolutionary optimization algorithms. The experimental results indicate that the proposed algorithm has better convergence and diversity, and its performance is superior to other comparative algorithms on most test instances.

2021 ◽  
Vol 11 (19) ◽  
pp. 9254
Author(s):  
Lingren Kong ◽  
Jianzhong Wang ◽  
Peng Zhao

Dynamic weapon target assignment (DWTA) is an effective method to solve the multi-stage battlefield fire optimization problem, which can reflect the actual combat scenario better than static weapon target assignment (SWTA). In this paper, a meaningful and effective DWTA model is established, which contains two practical and conflicting objectives, namely, maximizing combat benefits and minimizing weapon costs. Moreover, the model contains limited resource constraints, feasibility constraints and fire transfer constraints. The existence of multi-objective and multi-constraint makes DWTA more complicated. To solve this problem, an improved multiobjective particle swarm optimization algorithm (IMOPSO) is proposed in this paper. Various learning strategies are adopted for the dominated and non-dominated solutions of the algorithm, so that the algorithm can learn and evolve in a targeted manner. In order to solve the problem that the algorithm is easy to fall into local optimum, this paper proposes a search strategy based on simulated binary crossover (SBX) and polynomial mutation (PM), which enables elitist information to be shared among external archive and enhances the exploratory capabilities of IMOPSO. In addition, a dynamic archive maintenance strategy is applied to improve the diversity of non-dominated solutions. Finally, this algorithm is compared with three state-of-the-art multiobjective optimization algorithms, including solving benchmark functions and DWTA model in this article. Experimental results show that IMOPSO has better convergence and distribution than the other three multiobjective optimization algorithms. IMOPSO has obvious advantages in solving multiobjective DWTA problems.


2014 ◽  
Vol 571-572 ◽  
pp. 191-195
Author(s):  
Lin Ping Su ◽  
Zhao Wang ◽  
Zheng Guan Huang ◽  
Hao Li

Since the 1950s, with the great development of computer technology and bionics, particle swarm optimization (PSO) was raised. The particle swarm optimization mimics the nature biological group behaviors, and has the following advantages compared to classic optimization algorithms: it is a global optimization process and doesn’t depend on the initial state; it can be applied widely without prior knowledge on the optimization problems; the ideas and the implements of PSO are quite simple, the steps are standardization, and it’s very convenient to integrate it with other algorithms; PSO is based on the swarm intelligence theory, and it has very good potential parallelism. Particle swarm optimization has a feature that fitness value is used to exchange information in the population, and guides the population to close the optimal solution. Therefore, a mount of fitness should be calculated in swarm intelligence optimization algorithms in order to find the optimal solution or an approximate one. However, when the calculation of the fitness is quite complex, the time cost of this kind of algorithms will be too large. What’s more, the fitness of optimization problems in the real world is often difficult to calculate. Addressing this problem,Efficient Particle Swarm Optimization Algorithm Based on Affinity Propagation (EAPSO) is proposed in this paper.


2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


Irriga ◽  
2018 ◽  
Vol 23 (4) ◽  
pp. 798-817
Author(s):  
Saulo de Tarso Marques Bezerra ◽  
José Eloim Silva de Macêdo

DIMENSIONAMENTO DE REDES DE DISTRIBUIÇÃO DE ÁGUA MALHADAS VIA OTIMIZAÇÃO POR ENXAME DE PARTÍCULAS     SAULO DE TARSO MARQUES BEZERRA1 E JOSÉ ELOIM SILVA DE MACÊDO2   1 Universidade Federal de Pernambuco, Campus Agreste, Núcleo de Tecnologia, Avenida Campina Grande, S/N, Bairro Nova Caruaru, CEP 55014-900, Caruaru, Pernambuco, Brasil. [email protected]. 2 Centro Universitário Maurício de Nassau, Departamento de Engenharia Civil, BR 104, Km 68, S/N, Bairro Agamenon Magalhães, CEP 55000-000, Caruaru, Pernambuco, Brasil. [email protected].     1 RESUMO   Apresenta-se, neste trabalho, um modelo de otimização para o dimensionamento de sistemas pressurizados de distribuição de água para projetos de irrigação. A metodologia empregada é fundamentada no algoritmo Otimização por Enxame de Partículas (PSO), que é inspirada na dinâmica e comportamento social observados em muitas espécies de pássaros, insetos e cardumes de peixes. O PSO proposto foi aplicado em dois benchmark problems reportados na literatura, que correspondem à Hanoi network e a um sistema de irrigação localizado na Espanha. O dimensionamento resultou, para as mesmas condições de contorno, na solução de ótimo global para a Hanoi network, enquanto a aplicação do PSO na Balerma irrigation network demonstrou que o método proposto foi capaz de encontrar soluções quase ótimas para um sistema de grande porte com um tempo computacional razoável.   Palavras-chave: água, irrigação, análise econômica.     BEZERRA, S. T. M.; MACÊDO, J. E. S. LOOPED WATER DISTRIBUTION NETWORKS DESIGN VIA PARTICLE SWARM OPTIMIZATION ALGORITHM     2 ABSTRACT   This paper presents an optimization model for the design of pressurized water distribution systems for irrigation projects. The methodology is based on the Particle Swarm Optimization algorithm (PSO), which is inspired by the social foraging behavior of some animals such as flocking behavior of birds and the schooling behavior of fish. The proposed PSO has been tested on two benchmark problems reported in the literature, which correspond to the Hanoi network and an irrigation system located in Spain. The design resulted in the global optimum for the Hanoi network, while the application of PSO in Balerma irrigation network demonstrated that the proposed method was able to find almost optimal solutions for a large-scale network with reasonable computational time.   Keywords: water, irrigation, economic analysis. O desempenho do método foi comparado com trabalhos prévios, demonstrando convergência rápida e resultados satisfatórios na busca da solução ótima de um sistema com elevado exigência computacional.


Sign in / Sign up

Export Citation Format

Share Document