scholarly journals Optimal Placement of Wind Power Plants in Transmission Power Networks by Applying an Effectively Proposed Metaheuristic Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Minh Quan Duong ◽  
Thang Trung Nguyen ◽  
Thuan Thanh Nguyen

In this paper, a modified equilibrium algorithm (MEA) is proposed for optimally determining the position and capacity of wind power plants added in a transmission power network with 30 nodes and effectively selecting operation parameters for other electric components of the network. Two single objectives are separately optimized, including generation cost and active power loss for the case of placing one wind power plant (WPP) and two wind power plants (WPPs) at predetermined nodes and unknown nodes. In addition to the proposed MEA, the conventional equilibrium algorithm (CEA), heap-based optimizer (HBO), forensic-based investigation (FBI), and modified social group optimization (MSGO) are also implemented for the cases. Result comparisons indicate that the generation cost and power loss can be reduced effectively, thanks to the suitable location selection and appropriate power determination for WPPs. In addition, the generation cost and loss of the proposed MEA are also less than those from other compared methods. Thus, it is recommended that WPPs should be placed in power systems to reduce cost and loss, and MEA is a powerful method for the placement of wind power plants in power systems.

2014 ◽  
Vol 651-653 ◽  
pp. 1117-1122
Author(s):  
Zheng Ning Fu ◽  
Hong Wen Xie

Wind speed forecasting plays a significant role to the operation of wind power plants and power systems. An accurate forecasting on wind power can effectively relieve or avoid the negative impact of wind power plants on power systems and enhance the competition of wind power plants in electric power market. Based on a fuzzy neural network (FNN), a method of wind speed forecasting is presented in this paper. By mining historical data as the learning stylebook, the fuzzy neural network (FNN) forecasts the wind speed. The simulation results show that this method can improve the accuracy of wind speed forecasting effectively.


2019 ◽  
Vol 254 ◽  
pp. 113719 ◽  
Author(s):  
Rongsen Jin ◽  
Peng Hou ◽  
Guangya Yang ◽  
Yuanhang Qi ◽  
Cong Chen ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3369 ◽  
Author(s):  
Ana Fernández-Guillamón ◽  
Guillermo Martínez-Lucas ◽  
Ángel Molina-García ◽  
Jose Ignacio Sarasua

The lack of synchronous inertia, associated with the relevant penetration of variable speed wind turbines (VSWTs) into isolated power systems, has increased their vulnerability to strong frequency deviations. In fact, the activation of load shedding schemes is a common practice when an incident occurs, i.e., the outage of a conventional unit. Under this framework, wind power plants should actively contribute to frequency stability and grid reliability. However, the contribution of VSWTs to frequency regulation involves several drawbacks related to their efficiency and equipment wear due to electrical power requirements, rotational speed changes, and subsequently, shaft torque oscillations. As a result, wind energy producers are not usually willing to offer such frequency regulation. In this paper, a new control technique is proposed to optimize the frequency response of wind power plants after a power imbalanced situation. The proposed frequency controller depends on different power system parameters through a linear regression to determine the contribution of wind power plants for each imbalance condition. As a consequence, VSWTs frequency contribution is estimated to minimize their mechanical and electrical efforts, thus reducing their equipment wear. A group of sixty supply-side and imbalance scenarios are simulated and analyzed. Results of the case study are compared to previous proposals. The proposed adaptive control reduces the maximum torque and rotational speed variations while at the same time maintaining similar values of the load shedding program. Extensive results and discussion are included in the paper.


Sign in / Sign up

Export Citation Format

Share Document