scholarly journals Rock Damage and Aquifer Property Estimation from Water Level Fluctuations in Wells Induced by Seismic Waves: A Case Study in X10 Well, Xinjiang, China

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Di Zhao ◽  
Yifan Zeng ◽  
Xiaolong Sun ◽  
Aoshuang Mei

There is a coupling relationship between surrounding rock stress, deformation, and fracture evolution, especially in the microdynamics of the crust caused by mining activities and earthquakes. Previous research has investigated many cases regarding the coseismal water level responses and proposed a method to calculate the aquifer parameters by tidal analysis. However, to date, measurement of the degree of rock damage in the field has not been reported. Quantifying the fracture characteristics is essential for accurate evaluation of rock stability. This study has analyzed the relationship between the seismograms and hydroseismograms in response to the Mw 7.8 Solomon Islands earthquake and the Mw 7.8 Kaikōura earthquake, both events occurring in 2016. The calculated and measured changes in water level in the X10 well were fitted in order to study the relationships among the volumetric strain, the deviatoric strain, and the oscillations in the pore pressure. Then, we further estimate the degree of rock damage and the hydraulic characteristics of the aquifer. The results showed that the values for the rock damage parameter, 0.662 < αD < 0.754, and the Skempton coefficient, −0.100 < A < 0.026, estimated for the Solomon Islands earthquake signified higher damage and dilatancy in the X10 well. Also, the respective values for the parameters, 0.293 < αD < 0.363 and 0.226 < A < 0.251, calculated for the Kaikōura earthquake signified a lower degree of rock damage. It is concluded that the changes in the pore pressure were influenced by both the volumetric strain and the deviatoric strain. The degree of rock damage and the hydraulic properties of the aquifer estimated from the water level fluctuations in the wells which were induced by the seismic waves represent the actual aquifer characteristics.

2021 ◽  
Author(s):  
Grzegorz Lizurek ◽  
Konstantinos Leptokaropoulos ◽  
Jan Wiszniowski ◽  
Izabela Nowaczyńska ◽  
Nguyen Van Giang ◽  
...  

&lt;p&gt;Reservoir-triggered seismicity (RTS) is the longest known anthropogenic seismicity type. It has the potential to generate seismic events of M6 and bigger. Previous studies of this phenomenon have proved that major events are triggered on preexisting major discontinuities, forced to slip by stress changes induced by water level fluctuations and/or pore-pressure changes in the rock mass in the vicinity of reservoirs. Song Tranh 2 is an artificial water reservoir located in Central Vietnam. Its main goal is back up the water for hydropower plant. High seismic activity has been observed in this area since the reservoir was first filled in 2011. The relation between water level and seismic activity in the Song Tranh area is complex, and the lack of clear correlation between water level and seismic activity has led to the conclusion that ongoing STR2 seismic activity is an example of the delayed response type of RTS. However, the first phase of the activity observed after impoundment has been deemed a rapid response type. In this work, we proved that the seismicity recorded between 2013 and 2016 manifested seasonal trends related to water level changes during wet and dry seasons. The response of activity and its delay with respect to water level changes suggest that the main triggering factor is pore pressure change due to the significant water level changes observed. A stress orientation difference between low and high water periods is also revealed. The findings indicate that water load and related pore pressure changes influence seismic activity and stress orientation in this area.&lt;/p&gt;&lt;p&gt;This work was partially supported by research project no. 2017/27/B/ST10/01267, funded by the National Science Centre, Poland, under agreement no. UMO-2017/27/B/ST10/01267.&lt;/p&gt;


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Farid Terbouche ◽  
Ali Hamza ◽  
Smail Gabi

Purpose The purpose of this paper is the analysis of the dissipation of pore water pressures in the core of an earth dam, under the effect of water level fluctuations in the reservoir under operating conditions, taking into account the partial emptying and filling. Design/methodology/approach The Taksebt Dam, Tizi-Ouzou, Algeria was chosen as a case study, using a two-dimensional transient finite element numerical model. The GeoStudio calculation software is used through the SEEP/W. The latter takes into account the flow in the saturated and unsaturated zone, the formulation of SEEP/W allows the analysis of the dissipation of pore water pressures in the dyke. Starting from the maximum level of the reservoir, at least one cycle of partial emptying-filling was modelled over an eight-year operating period from 2011 to 2019. The input variables were the water level variation curve, material properties and boundary conditions. Findings It can be concluded that the numerical results obtained from the simulation model on the different points studied, namely, the pore water pressures are satisfactory as long as they are close to those recorded in the field by the pore pressure cells with an average error not exceeding 10% except for some measurements where the error is 20%. When the water level in the reservoir varies, the pore water pressures vary and their behaviour follows these fluctuations. Some points in the dam are affected by negative pore water pressures. No abnormal situations have been detected pore water pressures. Originality/value The numerical results of the simulation are analysed and validated against actual pore pressure cell measurements under operating conditions.


1997 ◽  
Vol 87 (2) ◽  
pp. 310-317 ◽  
Author(s):  
Eddie G. Quilty ◽  
Evelyn A. Roeloffs

Abstract We analyze co-seismic changes of water level in nine wells near Parkfield, California, produced by an MD 4.7 earthquake on 20 December 1994 in order to test the hypothesis that co-seismic water-level changes are proportional to co-seismic volumetric strain. For each well, a quantitative relationship between water level and volumetric strain can be inferred from water-level fluctuations due to earth tides and barometric pressure. The observed co-seismic water-level changes, which ranged from −16 to +34 cm, can therefore be compared with volumetric strain recorded by borehole strainmeters or calculated using a dislocation model of the earthquake. We were able to find a dislocation model of the earthquake rupture that predicts volumetric expansion at five of the six wells where water level fell co-seismically, as well as volumetric contraction at one of the two sites where water level rose. Strain predicted by the dislocation model is in good quantitative agreement with the strain inferred from water-level changes observed at four of the well sites, as well as strain recorded by three borehole strainmeters. Water-level changes at two more well sites correspond to strain somewhat greater than predicted by the model but agree in sign with model-calculated strains. At three of the well sites, however, water-level changes took place that cannot be explained as responses to co-seismic volumetric strain for any plausible dislocation model of the earthquake rupture. At two of these sites, one in and one near the San Andreas fault, large water-level drops are probably influenced by co-seismic fault creep. The third site has a history of large water-level rises in response to earthquakes at distances up to several hundred kilometers. This data set shows that co-seismic water-level changes in many wells are proportional to volumetric strain but that other wells exist in which different mechanisms dominate co-seismic response.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


1985 ◽  
Vol 11 (1) ◽  
pp. 179-183
Author(s):  
Jean-Luc Borel ◽  
Jacques-Léopold Brochier ◽  
Karen Lundström-Baudais

Geology ◽  
1975 ◽  
Vol 3 (8) ◽  
pp. 437 ◽  
Author(s):  
Robert L. Kovach ◽  
Amos Nur ◽  
Robert L. Wesson ◽  
Russell Robinson

Sign in / Sign up

Export Citation Format

Share Document