scholarly journals Robust and Blind Audio Watermarking Scheme Based on Genetic Algorithm in Dual Transform Domain

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Qiuling Wu ◽  
Aiyan Qu ◽  
Dandan Huang ◽  
Lejun Ma

In order to protect the copyright of audio media in cyberspace, a robust and blind audio watermarking scheme based on the genetic algorithm (GA) is proposed in a dual transform domain. A formula for calculating the embedding depth is developed, and two embedding depths with different values are used to represent the “1” and “0” states of the binary watermark, respectively. In the extracting process, the embedding depth in each audio fragment will be calculated and compared with the average embedding depth to determine the watermark bit by bit, so this scheme can blindly extract the watermark without the original audio. GA will be applied to optimize the algorithm parameters for meeting the performance requirements in different applications. Besides, the embedding rule is further optimized to enhance the transparency based on the principle of minimal modification to the audio. Experimental results prove that the payload capacity reaches 172.27 bps, the bit error rate (BER) is 0.1% under the premise that its transparency is higher than 25 dB, and its robustness is strong against many attacks. Significantly, this scheme can adaptively select the algorithm parameters to satisfy the specific performance requirements.

2015 ◽  
Vol 39 (4) ◽  
pp. 529-539 ◽  
Author(s):  
Farooq Husain ◽  
Omar Farooq ◽  
Ekram Khan

Abstract In this paper, a robust and perceptually transparent single-level and multi-level blind audio watermarking scheme using wavelets is proposed. A randomly generated binary sequence is used as a watermark, and wavelet function coding is used to embed the watermark sequence in audio signals. Multi-level watermarking is used to enhance payload capacity and can be used for a different level of security. The robustness of the scheme is evaluated by applying different attacks such as filtering, sampling rate alteration, compression, noise addition, amplitude scaling, and cropping. The simulation results obtained show that the proposed watermarking scheme is resilient to various attacks except cropping. Perceptual transparency of watermark is measured by using Perceptual Evaluation of Audio Quality (PEAQ) basic model of ITU-R (PEAQ ITU-R BS.1387) on Speech Quality Assessing Material (SQAM) given by European Broadcasting Union (EBU). Average Objective Difference Grade (ODG) measured for this method is -0.067 and -0.080 for single-level and multi-level watermarked audio signals, respectively. In the proposed single-level digital audio watermarking scheme, the payload capacity is increased by 19.05% as compared to the single-level Chirp-Based Digital Audio Watermarking (CB-DAWM) scheme.


Author(s):  
Sudipta Kr Ghosal ◽  
Jyotsna Kumar Mandal

In this chapter, a fragile watermarking scheme based on One-Dimensional Discrete Hartley Transform (1D-DHT) has been proposed to verify the authenticity of color images. One-Dimensional Discrete Hartley Transform (1D-DHT) converts each 1 x 2 sub-matrix of pixel components into transform domain. Watermark (along with a message digest MD) bits are embedded into the transformed components in varying proportion. To minimize the quality distortion, genetic algorithm (GA) based optimization is applied which yields the optimized component corresponding to each embedded component. Applying One-Dimensional Inverse Discrete Hartley Transform (1D-IDHT) on 1 x 2 sub-matrices of embedded components re-generates the pixel components in spatial domain. The reverse approach is followed by the recipient to retrieve back the watermark (along with the message digest MD) which in turn is compared against the re-computed Message Digest (MD') for authentication. Simulation results demonstrate that the proposed technique offers variable payload and less distortion as compared to existing schemes.


Symmetry ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 284 ◽  
Author(s):  
Qiuling Wu ◽  
Meng Wu

An adaptive and blind audio watermarking algorithm is proposed based on chaotic encryption in discrete cosine transform (DCT) and discrete wavelet transform (DWT) hybrid domain. Since human ears are not sensitive to small changes in the high-frequency components of the audio media, the encrypted watermark can be embedded into the audio signal according to the special embedding rules. The embedding depth of each audio segment is controlled by the overall average amplitude to effectively improve the robustness and imperceptibility. The watermark is encrypted by a chaotic sequence to improve the security of watermark, so only users who hold the correct key can accurately extract the watermark without the original audio signal. Experimental results show that the proposed algorithm has larger capacity, higher imperceptibility, better security, and stronger robustness when combating against signal-processing attacks than the involved audio watermarking algorithms in recent years.


Sign in / Sign up

Export Citation Format

Share Document