scholarly journals Towards Integration of Domain Knowledge-Guided Feature Engineering and Deep Feature Learning in Surface Electromyography-Based Hand Movement Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wentao Wei ◽  
Xuhui Hu ◽  
Hua Liu ◽  
Ming Zhou ◽  
Yan Song

As a machine-learning-driven decision-making problem, the surface electromyography (sEMG)-based hand movement recognition is one of the key issues in robust control of noninvasive neural interfaces such as myoelectric prosthesis and rehabilitation robot. Despite the recent success in sEMG-based hand movement recognition using end-to-end deep feature learning technologies based on deep learning models, the performance of today’s sEMG-based hand movement recognition system is still limited by the noisy, random, and nonstationary nature of sEMG signals and researchers have come up with a number of methods that improve sEMG-based hand movement via feature engineering. Aiming at achieving higher sEMG-based hand movement recognition accuracies while enabling a trade-off between performance and computational complexity, this study proposed a progressive fusion network (PFNet) framework, which improves sEMG-based hand movement recognition via integration of domain knowledge-guided feature engineering and deep feature learning. In particular, it learns high-level feature representations from raw sEMG signals and engineered time-frequency domain features via a feature learning network and a domain knowledge network, respectively, and then employs a 3-stage progressive fusion strategy to progressively fuse the two networks together and obtain the final decisions. Extensive experiments were conducted on five sEMG datasets to evaluate our proposed PFNet, and the experimental results showed that the proposed PFNet could achieve the average hand movement recognition accuracies of 87.8%, 85.4%, 68.3%, 71.7%, and 90.3% on the five datasets, respectively, which outperformed those achieved by the state of the arts.

2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Jifang Pei ◽  
Weibo Huo ◽  
Chenwei Wang ◽  
Yulin Huang ◽  
Yin Zhang ◽  
...  

Multiview synthetic aperture radar (SAR) images contain much richer information for automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that classification information, so that superior SAR ATR performance can be achieved. Hence, a general processing framework applicable for a multiview SAR ATR pattern is first given in this paper, which can provide an effective approach to ATR system design. Then, a new ATR method using a multiview deep feature learning network is designed based on the proposed multiview ATR framework. The proposed neural network is with a multiple input parallel topology and some distinct deep feature learning modules, with which significant classification features, the intra-view and inter-view features existing in the input multiview SAR images, will be learned simultaneously and thoroughly. Therefore, the proposed multiview deep feature learning network can achieve an excellent SAR ATR performance. Experimental results have shown the superiorities of the proposed multiview SAR ATR method under various operating conditions.


Sign in / Sign up

Export Citation Format

Share Document