feature engineering
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 488)

H-INDEX

25
(FIVE YEARS 10)

2022 ◽  
Vol 40 (4) ◽  
pp. 1-27
Author(s):  
Zhongwei Xie ◽  
Ling Liu ◽  
Yanzhao Wu ◽  
Luo Zhong ◽  
Lin Li

This article introduces a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using Word2vec. We leverage Wide ResNet50 and Word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.


Author(s):  
Muneeba Nasir ◽  
Abdul Rehman Javed ◽  
Muhammad Adnan Tariq ◽  
Muhammad Asim ◽  
Thar Baker

2022 ◽  
pp. 71-80
Author(s):  
Chandra Sekhar Kolli ◽  
Mohan Kumar Ch ◽  
Ganeshan Ramasamy ◽  
Gogineni Krishna Chaitanya

2022 ◽  
Author(s):  
Aya Hage Chehade ◽  
Nassib Abdallah ◽  
Jean-Marie Marion ◽  
Mohamad Oueidat ◽  
Pierre Chauvet

Abstract Lung and colon cancers are the most common causes of death. Their simultaneous occurrence is uncommon, however, in the absence of early diagnosis, the metastasis of cancer cells is very high between these two organs. Currently, histopathological diagnosis and appropriate treatment are the only possibility to improve the chances of survival and reduce cancer mortality. Using artificial intelligence in the histopathological diagnosis of colon and lung cancer can provide significant help to specialists in identifying cases of colon and lung cancers with less effort, time and cost. The objective of this study is to set up a computer-aided diagnostic system that can accurately classify five types of colon and lung tissues (two classes for colon cancer and three classes for lung cancer) by analyzing their histopathological images. Using machine learning, features engineering and image processing techniques, the five models XGBoost, SVM, RF, LDA and MLP were used to perform the classification of histopathological images of lung and colon cancers that were acquired from the LC25000 dataset. The main advantage of using machine learning models is that they allow for better interpretability of the classification model since they are based on feature engineering; however, deep learning models are black box networks whose working is very difficult to understand due to the complex network design. The acquired experimental results show that machine learning models give satisfactory results and are very precise in identifying classes of lung and colon cancer subtypes. The XGBoost model gave the best performance with an accuracy of 99% and a F1-score of 98.8%. The implementation and the development of this model will help healthcare specialists identify types of colon and lung cancers. The code will be available upon request.


Sign in / Sign up

Export Citation Format

Share Document