scholarly journals CDCN: A New NMF-Based Community Detection Method with Community Structures and Node Attributes

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiwen Ye ◽  
Hui Zhang ◽  
Libo Feng ◽  
Zhangming Shan

Community discovery can discover the community structure in a network, and it provides consumers with personalized services and information pushing. It plays an important role in promoting the intelligence of the network society. Most community networks have a community structure whose vertices are gathered into groups which is significant for network data mining and identification. Existing community detection methods explore the original network topology, but they do not make the full use of the inherent semantic information on nodes, e.g., node attributes. To solve the problem, we explore networks by considering both the original network topology and inherent community structures. In this paper, we propose a novel nonnegative matrix factorization (NMF) model that is divided into two parts, the community structure matrix and the node attribute matrix, and we present a matrix updating method to deal with the nonnegative matrix factorization optimization problem. NMF can achieve large-scale multidimensional data reduction processing to discover the internal relationships between networks and find the degree of network association. The community structure matrix that we proposed provides more information about the network structure by considering the relationships between nodes that connect directly or share similar neighboring nodes. The use of node attributes provides a semantic interpretation for the community structure. We conduct experiments on attributed graph datasets with overlapping and nonoverlapping communities. The results of the experiments show that the performances of the F1-Score and Jaccard-Similarity in the overlapping community and the performances of normalized mutual information (NMI) and accuracy (AC) in the nonoverlapping community are significantly improved. Our proposed model achieves significant improvements in terms of its accuracy and relevance compared with the state-of-the-art approaches.

Author(s):  
Jin Huang ◽  
Tinghua Zhang ◽  
Weihao Yu ◽  
Jia Zhu ◽  
Ercong Cai

Community detection is a well-established problem and nontrivial task in complex network analysis. The goal of community detection is to discover community structures in complex networks. In recent years, many existing works have been proposed to handle this task, particularly nonnegative matrix factorization-based method, e.g. HNMF, BNMF, which is interpretable and can learn latent features of complex data. These methods usually decompose the original matrix into two matrixes, in one matrix, each column corresponds to a representation of community and each column of another matrix indicates the membership between overall pairs of communities and nodes. Then they discover the community by updating the two matrices iteratively and learn the shallow feature of the community. However, these methods either ignore the topological structure characteristics of the community or ignore the microscopic community structure properties. In this paper, we propose a novel model, named Modularized Deep NonNegative Matrix Factorization (MDNMF) for community detection, which preserves both the topology information and the instinct community structure properties of the community. The experimental results show that our proposed models can significantly outperform state-of-the-art approaches on several well-known dataset.


Sign in / Sign up

Export Citation Format

Share Document