scholarly journals Blow-Up of Solutions for a Class Quasilinear Wave Equation with Nonlinearity Variable Exponents

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zakia Tebba ◽  
Hakima Degaichia ◽  
Mohamed Abdalla ◽  
Bahri Belkacem Cherif ◽  
Ibrahim Mekawy

This work deals with the blow-up of solutions for a new class of quasilinear wave equation with variable exponent nonlinearities. To clarify more, we prove in the presence of dispersion term − Δ u t t a finite-time blow-up result for the solutions with negative initial energy and also for certain solutions with positive energy. Our results are extension of the recent work (Appl Anal. 2017; 96(9): 1509-1515).

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Loay Alkhalifa ◽  
Hanni Dridi ◽  
Khaled Zennir

This paper is concerned with the blow-up of certain solutions with positive initial energy to the following quasilinear wave equation: u t t − M N u t Δ p · u + g u t = f u . This work generalizes the blow-up result of solutions with negative initial energy.


Author(s):  
Mohammad Shahrouzi ◽  
Jorge Ferreira ◽  
Erhan Pişkin

In this paper we consider a viscoelastic double-Kirchhoff type wave equation of the form $$ u_{tt}-M_{1}(\|\nabla u\|^{2})\Delta u-M_{2}(\|\nabla u\|_{p(x)})\Delta_{p(x)}u+(g\ast\Delta u)(x,t)+\sigma(\|\nabla u\|^{2})h(u_{t})=\phi(u), $$ where the functions $M_{1},M_{2}$ and $\sigma, \phi$ are real valued functions and $(g\ast\nabla u)(x,t)$ is the viscoelastic term which are introduced later. Under appropriate conditions for the data and exponents, the general decay result and blow-up of solutions are proved with positive initial energy. This study extends and improves the previous results in the literature to viscoelastic double-Kirchhoff type equation with degenerate nonlocal damping and variable-exponent nonlinearities.


2020 ◽  
Vol 17 (04) ◽  
pp. 727-763
Author(s):  
Anudeep Kumar Arora ◽  
Svetlana Roudenko

We study the generalized Hartree equation, which is a nonlinear Schrödinger-type equation with a nonlocal potential [Formula: see text]. We establish the local well-posedness at the nonconserved critical regularity [Formula: see text] for [Formula: see text], which also includes the energy-supercritical regime [Formula: see text] (thus, complementing the work in [A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math J., forthcoming], where we obtained the [Formula: see text] well-posedness in the intercritical regime together with classification of solutions under the mass–energy threshold). We next extend the local theory to global: for small data we obtain global in time existence and for initial data with positive energy and certain size of variance we show the finite time blow-up (blow-up criterion). In the intercritical setting the criterion produces blow-up solutions with the initial values above the mass–energy threshold. We conclude with examples showing currently known thresholds for global vs. finite time behavior.


2006 ◽  
Vol 61 (5-6) ◽  
pp. 235-238
Author(s):  
Necat Polat ◽  
Doğan Kaya

We consider the blow up of solution to the initial boundary value problem for the generalized Boussinesq equation with damping term. Under some assumptions we prove that the solution with negative initial energy blows up in finite time


2018 ◽  
Vol 59 (6) ◽  
pp. 061503 ◽  
Author(s):  
Runzhang Xu ◽  
Xingchang Wang ◽  
Yanbing Yang ◽  
Shaohua Chen

Sign in / Sign up

Export Citation Format

Share Document