scholarly journals Performance of Pier-to-Pier Cap Connections of Integral Bridges under Thermal and Seismic Loads

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Siva Avudaiappan ◽  
Kinson Prabu ◽  
Deban Selvaraj ◽  
Kiran Raja ◽  
Paul Oluwaseun Awoyera ◽  
...  

In general, most highway bridges are constructed using prestressed concrete or steel girders. Mechanical joints are provided at the end of each span, to allow for the expansion of the bridge deck due to shrinkage of concrete, thermal effects, and deflections, among others. Smooth riding ability, low noise, wear resistance, and water tightness should be provided by expansion joints. In recent times, the increased traffic volume, along with heavier vehicle movements, adversely affects the performance of expansion joints in the bridge girder, causing a possible failure in one of the above-mentioned mechanisms. The deterioration of the expansion joint may result in leakage of water, concrete cracking, and potential problems in the underlying substructure. In this paper, we study the pier-pier cap connections in integral bridges subjected to thermal and seismic loads using analytical methods and experimental tests.

PCI Journal ◽  
2004 ◽  
Vol 49 (1) ◽  
pp. 92-104 ◽  
Author(s):  
Nabil F. Grace ◽  
S. B. Singh ◽  
Mina M. Shinouda ◽  
Sunup S. Mathew

2015 ◽  
Vol 72 (5) ◽  
Author(s):  
Candra Irawan ◽  
Priyo Suprobo ◽  
I Gusti Putu Raka ◽  
Rudy Djamaluddin

Spun pile is one of the types of piles are widely used in the world construction, for example in building and bridge. Spun pile is a prestressed concrete pile with circular hollow section. This paper provides an overview of the research development of spun pile, starting from 80's until now. This overview is related to methods of increasing the strength and reliability of spun pile due to earthquake loads, either by modifying the longitudinal reinforcement and confinement. In addition, this paper also discusses about the failure patterns of spun pile due to seismic loads. Finally, this paper can be a reference for understanding the scope of the research topics that have been done by researchers. Thus, by this overview can be obtained new idea for the next research to improve the performance of spun pile carry seismic loads.


2008 ◽  
pp. 51-52
Author(s):  
C O’Suilleabhain ◽  
G Moor ◽  
T Spuler

Author(s):  
Philippe Menétrey ◽  
Lionel Moreillon ◽  
Maléna Bastien-Masse

<p>Paudèze bridges are two 400‐m long parallel highway bridges located in Switzerland and opened to traffic in 1974. After over 40 years of service life, both bridges must be completely rehabilitated and strengthened while constantly maintaining 2 traffic lanes in both directions.</p><p>The bridge deck slab was strengthened using UHPFRC (Ultra‐High Performance Fiber Reinforced Concrete) struts. These inclined struts connect the end of the deck slab cantilever and the box girder web, forming a Warren truss. They thus reduce the bending moments in the deck slab and the existing steel reinforcement could be kept.</p><p>The joint between the prefabricated UHPFRC struts and the existing concrete web is done through a cast in‐ place UHPFRC beam, without any mechanical connection. Forces go through the joint and into the web by a combination of friction and compression forces.</p><p>Various experimental tests and numerical simulations confirmed the feasibility of this solution. In particular, the UHPFRC‐concrete web connection, the UHPFRC‐UHPFRC connection and the global behavior of the strut were tested and modelled.</p><p>The strengthening of the bridges decks took place between 2017 and 2019. The developed solution, using UHPFRC struts, was shown to be very effective to strengthen the deck and creates a rhythm in the structure.</p>


2020 ◽  
Vol 10 (16) ◽  
pp. 5560 ◽  
Author(s):  
Matthias Hillebrand ◽  
Josef Hegger

In the recent years, bridges, as an important part of the national and international infrastructure, had to comply with stricter requirements due to increased heavy load traffic. Many of these bridge structures built in the 1960s and 1970s often contain less web reinforcement than the modern required minimum web reinforcement. In this context, the shear resistance under cyclic loading is of special interest. For this reason, experimental tests were conducted on prestressed concrete beams with and without shear reinforcement at the Institute of Structural Concrete of RWTH Aachen University to investigate the shear fatigue strength. This paper describes the recent tests on ten Tshaped prestressed beams with web reinforcement. The specimens were able to resist more load cycles than predicted by the approaches implemented in the Eurocodes for bridges. Based on the test results, design models for shear under cyclic loading should be reviewed and improved, especially regarding the assessment of existing structures.


Sign in / Sign up

Export Citation Format

Share Document