scholarly journals On the Matrix Versions of Incomplete Extended Gamma and Beta Functions and Their Applications for the Incomplete Bessel Matrix Functions

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chaojun Zou ◽  
Mimi Yu ◽  
Ahmed Bakhet ◽  
Fuli He

In this paper, we first introduce the incomplete extended Gamma and Beta functions with matrix parameters; then, we establish some different properties for these new extensions. Furthermore, we give a specific application for the incomplete Bessel matrix function by using incomplete extended Gamma and Beta functions; at last, we construct the relation between the incomplete confluent hypergeometric matrix functions and incomplete Bessel matrix function.

2003 ◽  
Vol 2003 (34) ◽  
pp. 2157-2176 ◽  
Author(s):  
A. Böttcher ◽  
S. Grudsky ◽  
I. Spitkovsky

This paper is concerned with the influence of frequency modulation on the semi-Fredholm properties of Toeplitz operators with oscillating matrix symbols. The main results give conditions on an orientation-preserving homeomorphismαof the real line that ensure the following: ifbbelongs to a certain class of oscillating matrix functions (periodic, almost periodic, or semi-almost periodic matrix functions) and the Toeplitz operator generated by the matrix functionb(x)is semi-Fredholm, then the Toeplitz operator with the matrix symbolb(α(x))is also semi-Fredholm.


1989 ◽  
Vol 111 (2) ◽  
pp. 142-145 ◽  
Author(s):  
Muh-Yang Chen ◽  
Chyi Hwang

In this paper, an improved method of rational approximation is presented for evaluating the irrational matrix function f(A), where A is a square matrix and f(s) is a scalar irrational function which is analytic on the spectrum of A. The improvement in the accuracy of the approximation off (A) by a rational matrix function is achieved by using the multipoint Pade approximants to f(s). An application example to model conversion involving the evaluations of the matrix exponential exp (AT) and the matrix logarithm ln(F) is provided to illustrate the superiority of the method.


Author(s):  
G. Mishuris ◽  
S. Rogosin

From the classic work of Gohberg & Krein (1958 Uspekhi Mat. Nauk. XIII , 3–72. (Russian).), it is well known that the set of partial indices of a non-singular matrix function may change depending on the properties of the original matrix. More precisely, it was shown that if the difference between the largest and the smallest partial indices is larger than unity then, in any neighbourhood of the original matrix function, there exists another matrix function possessing a different set of partial indices. As a result, the factorization of matrix functions, being an extremely difficult process itself even in the case of the canonical factorization, remains unresolvable or even questionable in the case of a non-stable set of partial indices. Such a situation, in turn, has became an unavoidable obstacle to the application of the factorization technique. This paper sets out to answer a less ambitious question than that of effective factorizing matrix functions with non-stable sets of partial indices, and instead focuses on determining the conditions which, when having known factorization of the limiting matrix function, allow to construct another family of matrix functions with the same origin that preserves the non-stable partial indices and is close to the original set of the matrix functions.


2017 ◽  
Vol 5 (1) ◽  
pp. 113-122
Author(s):  
F. Schäfer

Abstract For theoretical studies, it is helpful to have an explicit expression for a matrix function. Several methods have been used to determine the required Frobenius covariants. This paper presents a recursive formula that calculates these covariants effectively. The new aspect of this method is the simple determination of the occurring coefficients in the covariants. The advantage is shown by several examples for the matrix exponential in comparision with Mathematica. The calculations are performed exactly.


2001 ◽  
Vol 89 (2) ◽  
pp. 245 ◽  
Author(s):  
Pedro Lopez-Rodriguez

We obtain the Nevanlinna parametrization for an indeterminate matrix moment problem, giving a homeomorphism between the set $V$ of solutions to the matrix moment problem and the set $\mathcal V$ of analytic matrix functions in the upper half plane such that $V(\lambda )^*V(\lambda )\le I$. We characterize the N-extremal matrices of measures (those for which the space of matrix polynomials is dense in their $L^2$-space) as those whose corresponding matrix function $V(\lambda )$ is a constant unitary matrix.


1977 ◽  
Vol 29 (5) ◽  
pp. 937-946
Author(s):  
Hock Ong

Let F be a field, F* be its multiplicative group and Mn(F) be the vector space of all n-square matrices over F. Let Sn be the symmetric group acting on the set {1, 2, … , n}. If G is a subgroup of Sn and λ is a function on G with values in F, then the matrix function associated with G and X, denoted by Gλ, is defined byand letℐ(G, λ) = { T : T is a linear transformation of Mn(F) to itself and Gλ(T(X)) = Gλ(X) for all X}.


2020 ◽  
Vol 53 (4) ◽  
pp. 1101-1107
Author(s):  
Leslie Glasser

Values of molecular bond lengths, bond angles and (less frequently) bond torsion angles are readily available from databases, from crystallographic software, and/or from interactive molecular and crystal visualization programs such as Jmol. However, the methods used to calculate these values are less well known. In this paper, the computational methods are described in detail, and live Excel implementations, which permit readers to readily perform the calculations for their own molecular systems, are provided. The methods described apply to both fractional coordinates in crystal space and Cartesian coordinates in Euclidean space (space in which the geometric postulates of Euclid are valid) and are vector/matrix based. In their simplest computational form, they are applied as algebraic expansions which are summed. They are also available in matrix formulations, which are readily manipulated and calculated using the matrix functions of Excel. In particular, their general formulation as metric matrices is introduced. The methods in use are illustrated by a detailed example of the calculations. This contribution provides a significant practical application which can also act as motivation for the study of matrix mathematics with respect to its many uses in chemistry.


2007 ◽  
Vol 17 (04) ◽  
pp. 593-615 ◽  
Author(s):  
J. ELSCHNER ◽  
H.-C. KAISER ◽  
J. REHBERG ◽  
G. SCHMIDT

Let ϒ be a three-dimensional Lipschitz polyhedron, and assume that the matrix function μ is piecewise constant on a polyhedral partition of ϒ. Based on regularity results for solutions to two-dimensional anisotropic transmission problems near corner points we obtain conditions on μ and the intersection angles between interfaces and ∂ϒ ensuring that the operator -∇ · μ∇ maps the Sobolev space [Formula: see text] isomorphically onto W-1,q(ϒ) for some q > 3.


2019 ◽  
Vol 13 (08) ◽  
pp. 2050142
Author(s):  
Ravi Dwivedi ◽  
Vivek Sahai

This paper deals with the [Formula: see text]-analogues of generalized zeta matrix function, digamma matrix function and polygamma matrix function. We also discuss their regions of convergence, integral representations and matrix relations obeyed by them. We also give a few identities involving digamma matrix function and [Formula: see text]-hypergeometric matrix series.


Sign in / Sign up

Export Citation Format

Share Document