computational form
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 0)

Author(s):  
Andrew M. K. Nassief

The usage of Quantum Similarity through the equation Z = {∀θ ∈ Z → ∃s ∈ S ∧ ∃t ∈ T : θ = (s, t)}, represents a way to analyze the way communication works in our DNA. Being able to create the object set reference for z being (s, t) in our DNA strands, we are able to set logical tags and representations of our DNA in a completely computational form. This will allow us to have a better understanding of the sequences that happen in our DNA. With this approach, we can also utilize mathematical formulas such as the Euler–Mascheroni constant, regression analysis, and computational proofs to answer important questions on Quantum biology, Quantum similarity, and Theoretical Physics.


2020 ◽  
Vol 53 (4) ◽  
pp. 1101-1107
Author(s):  
Leslie Glasser

Values of molecular bond lengths, bond angles and (less frequently) bond torsion angles are readily available from databases, from crystallographic software, and/or from interactive molecular and crystal visualization programs such as Jmol. However, the methods used to calculate these values are less well known. In this paper, the computational methods are described in detail, and live Excel implementations, which permit readers to readily perform the calculations for their own molecular systems, are provided. The methods described apply to both fractional coordinates in crystal space and Cartesian coordinates in Euclidean space (space in which the geometric postulates of Euclid are valid) and are vector/matrix based. In their simplest computational form, they are applied as algebraic expansions which are summed. They are also available in matrix formulations, which are readily manipulated and calculated using the matrix functions of Excel. In particular, their general formulation as metric matrices is introduced. The methods in use are illustrated by a detailed example of the calculations. This contribution provides a significant practical application which can also act as motivation for the study of matrix mathematics with respect to its many uses in chemistry.


2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Zahra Jalali ◽  
Mehrzad Esmaeili Charkhab

2020 ◽  
Vol 995 ◽  
pp. 222-228
Author(s):  
Hooi Min Yee ◽  
Abdul Malek Nurul Afiqah

This paper presents the computational form-finding analysis of half-Costa tensioned membrane structure model in YZ-plane with different boundaries. The computational form-finding analysis is carried out based on nonlinear analysis method. The tensioned membrane structure in the form of half-Costa models in YZ-plane with different geometry have been found to converge with least square error of total warp and fill stress deviation. The outcome of this paper can serve as a reference in selecting satisfactory parameters to allow the performance increase of tensioned membrane structure in the form of half-Costa in YZ-plane respected to their boundary condition. These models will be selective forms of tensioned membrane structure for design engineers and architect to ponder on as it is a resource efficient structure hence preventing further damage to the environment.


2019 ◽  
pp. 120-130
Author(s):  
Paul Humphreys

A sixfold taxonomy for emergence is presented into which a variety of contemporary accounts of emergence fit. The first dimension of the taxonomy consists of inferential, conceptual, and ontological emergence; the second dimension consists of diachronic and synchronic versions of each of these types of emergence. The adequacy of weak emergence, a specifically computational form of inferential emergence, is then examined, and its relationship to conceptual emergence and ontological emergence is detailed. Arguments are given assessing whether the end state of a weakly emergent process has to satisfy a novelty condition and new argumet is provided for the conclusion that diachronic emergence involves tokens of states.


2018 ◽  
Vol 777 ◽  
pp. 538-542
Author(s):  
Hooi Min Yee ◽  
Natasha Zureena Arabi ◽  
Abdul Malek Afiqah Nurul ◽  
Rohamezan Rohim ◽  
Amer Yusuff

Computational form-finding analysis need to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed pre-stress and boundary condition. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Alternative source of inspiration of minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to investigate initial equilibrium shape of tensioned fabric structures in the form of Richmond’s minimal surfaces using nonlinear analysis method. The study proposes an alternative choice for engineer to consider the Richmond’s minimal surface withr=0.24,t=1.31;r=0.34,t=1.21andr=0.44,t=1.11 applied in tensioned fabric structure. The results on parameter range in Richmond’s minimal surface can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface.


2018 ◽  
Vol 33 (2) ◽  
pp. 86-97 ◽  
Author(s):  
Carlos Lázaro ◽  
Juan Bessini ◽  
Salvador Monleón

This article reviews the different aspects involved in computational form finding of bending-active structures based on the dynamic relaxation technique. Dynamic relaxation has been applied to form-finding problems of bending-active structures in a number of references. Due to the complex nature of large spatial deformations of flexible beams, the implementation of suitable mechanical beam models in the dynamic relaxation algorithm is a non-trivial task. Type of discretization and underlying beam theory have been identified as key aspects for numerical implementations. References can be classified into two groups depending on the selected discretization: finite-difference-like and finite-element-like. The first group includes 3- and 4-degree-of-freedom implementations based on increasingly complex beam models. The second gathers 6-degree-of-freedom discretizations based on co-rotational three-dimensional Kirchhoff–Love beam elements and geometrically exact Reissner–Simo beam elements. After reviewing and comparing implementation details, the advantages and drawbacks of each group have been discussed, and open aspects for future work have been pointed out.


2018 ◽  
Vol 115 (16) ◽  
pp. 4122-4127 ◽  
Author(s):  
Anna B. Konova ◽  
Kenway Louie ◽  
Paul W. Glimcher

Craving is thought to be a specific desire state that biases choice toward the desired object, be it chocolate or drugs. A vast majority of people report having experienced craving of some kind. In its pathological form craving contributes to health outcomes in addiction and obesity. Yet despite its ubiquity and clinical relevance we still lack a basic neurocomputational understanding of craving. Here, using an instantaneous measure of subjective valuation and selective cue exposure, we identify a behavioral signature of a food craving-like state and advance a computational framework for understanding how this state might transform valuation to bias choice. We find desire induced by exposure to a specific high-calorie, high-fat/sugar snack good is expressed in subjects’ momentary willingness to pay for this good. This effect is selective but not exclusive to the exposed good; rather, we find it generalizes to nonexposed goods in proportion to their subjective attribute similarity to the exposed ones. A second manipulation of reward size (number of snack units available for purchase) further suggested that a multiplicative gain mechanism supports the transformation of valuation during laboratory craving. These findings help explain how real-world food craving can result in behaviors inconsistent with preferences expressed in the absence of craving and open a path for the computational modeling of craving-like phenomena using a simple and repeatable experimental tool for assessing subjective states in economic terms.


Sign in / Sign up

Export Citation Format

Share Document