scholarly journals An Efficient Identification Algorithm to Identify Mobile RFID Tags

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yonglei Yao ◽  
Jian Su

Tag identification in a fast-moving environment is an emerging challenge for future RFID systems. However, existing literatures on the tag reading protocol design primarily apply to stationary scenarios, which fail to cope with mobile environments with unreliable channel condition. In this paper, we first review various types of prior reading protocols and then discuss a new direction of mobile tag reading by proposing a novel partitioning strategy. This analysis and experimental results show its superiority in achieving reading performance for the UHF RFID system under a mobile environment.

Author(s):  
Jiaqi Xu ◽  
Wei Sun ◽  
Kannan Srinivasan

RFID techniques have been extensively used in sensing systems due to their low cost. However, limited by the structural simplicity, collision is one key issue which is inevitable in RFID systems, thus limiting the accuracy and scalability of such sensing systems. Existing anti-collision techniques try to enable parallel decoding without sensing based applications in mind, which can not operate on COTS RFID systems. To address the issue, we propose COFFEE, which enables parallel channel estimation of COTS passive tags by harnessing the collision. We revisit the physical layer design of current standard. By exploiting the characteristics of low sampling rate and channel diversity of RFID tags, we separate the collided data and extract the channels of the collided tags. We also propose a tag identification algorithm which explores history channel information and identify the tags without decoding. COFFEE is compatible with current COTS RFID standards which can be applied to all RFID-based sensing systems without any modification on tag side. To evaluate the real world performance of our system, we build a prototype and conduct extensive experiments. The experimental results show that we can achieve up to 7.33x median time resolution gain for the best case and 3.42x median gain on average.


Author(s):  
Kassy M. Lum ◽  
Donnie Proffitt ◽  
Ann Whitney ◽  
Johné M. Parker

Radio Frequency Identification (RFID) is a disruptive technology that uses radio waves to uniquely identify objects. As such, it has the potential to bring significant benefits to numerous government and private sector initiatives. However, significant technical challenges remain. A key area of study is in system performance: while the major hardware components in an RFID system (i.e., tags, readers and middleware) have been and continue to be studied extensively, there has been little research, comparatively, in characterizing RFID system performance. The research presented in this paper was inspired, in part, by a laser printer RFID solution; i.e., one in which the printer simultaneously prints and programs ultra-high frequency (UHF) tags embedded in print media. In this paper, we have conducted a detailed experimental investigation of the primary factors influencing the performance of RFID systems similar to the print solution. This study aims to provide a systematic experimental process for investigating key factors — e.g., the air gap between reader antenna and tag, in-plane orientation of the tag with respect to the reader antenna, and power level output of the reader — which affect the programmability of UHF RFID tags. Results provide a baseline evaluation of the functionality of RFID systems of similar designs and provide a basis for a detailed exploration of the primary factors which affect RFID UHF passive tag dynamic programming capabilities. By understanding which factors significantly affect the readability and programming of RFID tags, this research suggests optimal designs for system functionality and provides data needed in order to advance such designs. Additionally, a key obstacle for RFID implementation is tag selection. Effectively matching tags to applications requires numerous economic and technical considerations; these considerations generate different implementation constraints. This paper lays the foundation for a multi-objective optimization algorithm to help determine optimal tag selection for a given application, based upon tag performance and cost.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Joshua Bolton ◽  
Erick Jones ◽  
Raghavendra Kumar Punugu ◽  
Ankan Addy ◽  
Samuel Okate

As the price of passive radio frequency identification (RFID) tags continues to decrease, more and more companies are considering item-level tagging. Although the use of RFID is simple, its proper application should be studied to achieve maximum efficiency and utilization in the industry. This paper is intended to demonstrate the test results of various multisurface UHF tags from different manufacturers for their readability under varying conditions such as orientation of tags with respect to reader, distance of tag from the reader, and materials used for embedding tags. These conditions could affect the reliability of RFID systems used for varied applications. In this paper, we implement a Design for Six Sigma Research (DFSS-R) methodology that allows for reliability testing of RFID systems. In this paper, we have showcased our results about the benchmarking of UHF RFID tags and have put forward an important observation about the blind spots observed at different distances and orientations along different surfaces, which is primarily due to the polarity of the antenna chosen.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lingyun Zhao ◽  
Lukun Wang ◽  
Shan Du

In large-scale Internet of Things (IoT) applications, tags are attached to items, and users use a radiofrequency identification (RFID) reader to quickly identify tags and obtain the corresponding item information. Since multiple tags share the same channel to communicate with the reader, when they respond simultaneously, tag collision will occur, and the reader cannot successfully obtain the information from the tag. To cope with the tag collision problem, ultrahigh frequency (UHF) RFID standard EPC G1 Gen2 specifies an anticollision protocol to identify a large number of RFID tags in an efficient way. The Q -algorithm has attracted much more attention as the efficiency of an EPC C1 Gen2-based RFID system can be significantly improved by only a slight adjustment to the algorithm. In this paper, we propose a novel Q -algorithm for RFID tag identification, namely, HTEQ, which optimizes the time efficiency of an EPC C1 Gen2-based RFID system to the utmost limit. Extensive simulations verify that our proposed HTEQ is exceptionally expeditious compared to other algorithms, which promises it to be competitive in large-scale IoT environments.


2019 ◽  
Vol 67 (3) ◽  
pp. 2527-2538 ◽  
Author(s):  
Jian Su ◽  
Zhengguo Sheng ◽  
Liangbo Xie ◽  
Gang Li ◽  
Alex X. Liu

Sign in / Sign up

Export Citation Format

Share Document