scholarly journals t-BMPNet: Trainable Bitwise Multilayer Perceptron Neural Network over Fully Homomorphic Encryption Scheme

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Joon Soo Yoo ◽  
Ji Won Yoon

Homomorphic encryption (HE) is notable for enabling computation on encrypted data as well as guaranteeing high-level security based on the hardness of the lattice problem. In this sense, the advantage of HE has facilitated research that can perform data analysis in an encrypted state as a purpose of achieving security and privacy for both clients and the cloud. However, much of the literature is centered around building a network that only provides an encrypted prediction result rather than constructing a system that can learn from the encrypted data to provide more accurate answers for the clients. Moreover, their research uses simple polynomial approximations to design an activation function causing a possibly significant error in prediction results. Conversely, our approach is more fundamental; we present t-BMPNet which is a neural network over fully homomorphic encryption scheme that is built upon primitive gates and fundamental bitwise homomorphic operations. Thus, our model can tackle the nonlinearity problem of approximating the activation function in a more sophisticated way. Moreover, we show that our t-BMPNet can perform training—backpropagation and feedforward algorithms—in the encrypted domain, unlike other literature. Last, we apply our approach to a small dataset to demonstrate the feasibility of our model.

Author(s):  
Xun Wang ◽  
Tao Luo ◽  
Jianfeng Li

Information retrieval in the cloud is common and convenient. Nevertheless, privacy concerns should not be ignored as the cloud is not fully trustable. Fully Homomorphic Encryption (FHE) allows arbitrary operations to be performed on encrypted data, where the decryption of the result of ciphertext operation equals that of the corresponding plaintext operation. Thus, FHE schemes can be utilized for private information retrieval (PIR) on encrypted data. In the FHE scheme proposed by Ducas and Micciancio (DM), only a single homomorphic NOT AND (NAND) operation is allowed between consecutive ciphertext refreshings. Aiming at this problem, an improved FHE scheme is proposed for efficient PIR where homomorphic additions and multiplications are based on linear operations on ciphertext vectors. Theoretical analysis shows that when compared with the DM scheme, the proposed scheme allows multiple homomorphic additions and a single homomorphic multiplication to be performed. The number of allowed homomorphic additions is determined by the ratio of the ciphertext modulus to the upper bound of initial ciphertext noise. Moreover, simulation results show that the proposed scheme is significantly faster than the DM scheme in the homomorphic evaluation for a series of algorithms.


2018 ◽  
Vol 7 (03) ◽  
pp. 23785-23789
Author(s):  
S.V.Suriya Prasad ◽  
K. Kumanan

Fully Homomorphic Encryption is used to enhance the security incase of un-trusted systems or applications that deals with sensitive data. Homomorphic encryption enables computation on encrypted data without decryption. Homomorphic encryption prevents sharing of data within the cloud service where data is stored in a public cloud . In Partially Homomorphic Encryption it performs either additive or multiplicative operation, but not both operation can be carried out at a same time. Whereas , in case of Fully Homomorphic Encryption both operations can be carried out at same time. In this model , Enhanced BGV Encryption Technique is used to perform FHE operations on encrypted data and sorting is performed using the encrypted data


Author(s):  
Parth Tandel ◽  
Abhinav Shubhrant ◽  
Mayank Sohani

Cloud Computing is widely regarded as the most radically altering trend in information technology. However, great benefits come with great challenges, especially in the area of data security and privacy protection. Since standard cloud computing uses plaintext, certain encryption algorithms were implemented in the cloud for security reasons, and ‘encrypted' data was then stored in the cloud. Homomorphic Encryption (HE), a modern kind of encryption strategy, is born as a result of this change. Primarily, the paper will focus on implementing a successful Homomorphic Encryption (HE) scheme for polynomials. Furthermore, the objective of the paper is to propose, produce and implement a method to convert the already implemented sequentially processing Homomorphic Encryption into parallel processing Homomorphic Encryption (HE) using a Parallel Processing concept (Partitioning, Assigning, Scheduling, etc) and thereby producing a better performing Homomorphic Encryption (HE) called Fully Homomorphic Encryption (FHE). Fully Homomorphic Encryption (FHE) is an encryption technique that can perform specific analytical operations, functions and methods on normal or encrypted data and can still perform traditional encryption results as performed on plaintext. The three major reasons for implementing Fully Homomorphic Encryption (FHE) are advantages like no involvement of third parties, trade-off elimination between privacy and security and quantum safety.


2020 ◽  
Author(s):  
Megha Kolhekar ◽  
Ashish Pandey ◽  
Ayushi Raina ◽  
Rijin Thomas ◽  
Vaibhav Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document