Invertibility-preserving maps ofC∗-algebras with real rank zero
2005 ◽
Vol 2005
(6)
◽
pp. 685-689
◽
Keyword(s):
In 1996, Harris and Kadison posed the following problem: show that a linear bijection betweenC∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that ifAandBare semisimple Banach algebras andΦ:A→Bis a linear map ontoBthat preserves the spectrum of elements, thenΦis a Jordan isomorphism if eitherAorBis aC∗-algebra of real rank zero. We also generalize a theorem of Russo.
1996 ◽
Vol 139
(2)
◽
pp. 325-348
◽
2014 ◽
Vol 14
(3)
◽
pp. 570-613
◽
2006 ◽
Vol 134
(10)
◽
pp. 3015-3024
◽
Linear orthogonality preservers of Hilbert $C^{*}$-modules over $C^{*}$-algebras with real rank zero
2012 ◽
Vol 140
(9)
◽
pp. 3151-3160
◽
1997 ◽
Vol 125
(9)
◽
pp. 2671-2676
2016 ◽
Vol 86
(3)
◽
pp. 301-319
2014 ◽
Vol 8
(4)
◽
pp. 1061-1081
◽
1996 ◽
Vol 39
(4)
◽
pp. 429-437
◽