scholarly journals On a singular integral equation with log kernel and its application

Author(s):  
Sudeshna Banerjea ◽  
Chiranjib Sarkar

We used function theoretic method to solve a singular integral equation with logarithmic kernel in two disjoint finite intervals where the unknown function satisfying the integral equation may be bounded or unbounded at the nonzero finite endpoints of the interval concerned. An appropriate solution of this integral equation is then applied to solve the problem of scattering of time harmonic surface water waves by a fully submerged thin vertical barrier with a single gap.

Author(s):  
Sudeshna Banerjea ◽  
B. N. Mandal

AbstractA train of surface water waves normally incident on a thin vertical wall completely submerged in deep water and having a gap, experiences reflection by the wall and transmission through the gaps above and in the wall. Using Havelock's expansion of water wave potential, two different integral equation formulations of the problem are presented. While the first formulation involves multiple integral equations which are solved here by reducing them to a singular integral equation with Cauchy kernel in a double interval, the second formulation involves a first-kind singular integral equation in a double interval with a combination of logarithmic and Cauchy kernel, the solution of which is obtained by utilizing the solution of a singular integral equation with Cauchy kernel in (0, ∞) and also in a double interval. The reflection coefficient is evaluated by both the methods.


1989 ◽  
Vol 12 (4) ◽  
pp. 741-748
Author(s):  
B. N. Mandal ◽  
P. K. Kundu

This note is concerned with the transmission of a train of surface water waves obliquely incident on a thin plane vertical barrier with a narrow gap. Within the framework of the linearized theory of water waves, the problem is reduced to the solution of an integral equation which is solved approximately. The transmission and reflection co–efficients are also obtained approximately and represented graphically against the different angles of incidence for fixed wave numbers.


1984 ◽  
Vol 96 (2) ◽  
pp. 359-369 ◽  
Author(s):  
B. N. Mandal ◽  
S. K. Goswami

AbstractThe problem of scattering of surface water waves obliquely incident on a fixed half immersed circular cylinder is solved approximately by reducing it to the solution of an integral equation and also by the method of multipoles. For different values of the angle of incidence and the wave number the reflection and transmission coefficients obtained by both methods are evaluated numerically and represented graphically to compare the results obtained by the respective methods.


Sign in / Sign up

Export Citation Format

Share Document