Journal of Marine Science and Application
Latest Publications


TOTAL DOCUMENTS

1033
(FIVE YEARS 168)

H-INDEX

18
(FIVE YEARS 4)

Published By Springer-Verlag

1993-5048, 1671-9433

Author(s):  
Gustavo O. Guarniz Avalos ◽  
Milad Shadman ◽  
Segen F. Estefen

Abstract The latching control represents an attractive alternative to increase the power absorption of wave energy converters (WECs) by tuning the phase of oscillator velocity to the wave excitation phase. However, increasing the amplitude of motion of the floating body is not the only challenge to obtain a good performance of the WEC. It also depends on the efficiency of the power take-off system (PTO). This study aims to address the actual power performance and operation of a heaving point absorber with a direct mechanical drive PTO system controlled by latching. The PTO characteristics, such as the gear ratio, the flywheel inertia, and the electric generator, are analyzed in the WEC performance. Three cylindrical point absorbers are also considered in the present study. A wave-to-wire model is developed to simulate the coupled hydro-electro-mechanical system in regular waves. The wave energy converter (WEC) performance is analyzed using the potential linear theory but considering the viscous damping effect according to the Morison equation to avoid the overestimated responses of the linear theory near resonance when the latching control system is applied. The latching control system increases the mean power. However, the increase is not significant if the parameters that characterize the WEC provide a considerable mean power. The performance of the proposed mechanical power take-off depends on the gear ratio and flywheel. However, the gear ratio shows a more significant influence than the flywheel inertia. The operating range of the generator and the diameter/draft ratio of the buoy also influence the PTO performance.


Author(s):  
Takahito Iida ◽  
Yudai Yokoyama

AbstractThe sensitivity of moving particle semi-implicit (MPS) simulations to numerical parameters is investigated in this study. Although the verification and validation (V&V) are important to ensure accurate numerical results, the MPS has poor performance in convergences with a time step size. Therefore, users of the MPS need to tune numerical parameters to fit results into benchmarks. However, such tuning parameters are not always valid for other simulations. We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem (i.e., an MPS-slamming condition). The MPS-slamming condition is represented by an MPS-slamming number, which provides the optimum time step size once the MPS-slamming number, slamming velocity, deadrise angle of the wedge, and particle size are decided. The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition, and the use of the same MPS-slamming number provides a similar flow.


Author(s):  
Xujian Lyu ◽  
Honglu Yun ◽  
Zhaoyu Wei

Abstract In this paper, the flow physics and impact dynamics of a sphere bouncing on a water surface are studied experimentally. During the experiments, high-speed camera photography techniques are used to capture the cavity and free surface evolution when the sphere impacts and skips on the water surface. The influences of the impact velocity (v1) and impact angle (θ1) of the sphere on the bouncing flow physics are also investigated, including the cavitation evolution, motion characteristics, and bounding law. Regulations for the relationship between v1 and θ1 to judge whether the sphere can bounce on the water surface are presented and analyzed by summarizing a large amount of experimental data. In addition, the effect of θ1 on the energy loss of the sphere is also analyzed and discussed. The experiment results show that there is a fitted curve of $${v}_{1}=17.5{\theta }_{1}-45.5$$ v 1 = 17.5 θ 1 - 45.5 determining the relationship between the critical initial velocity and angle whether the sphere bounces on the water surface.


Author(s):  
Siti Ayishah Thaminah Hikmatullah Sahib ◽  
Muhammad Zahir Ramli ◽  
Muhammad Afiq Azman ◽  
Muhammad Mazmirul Abd Rahman ◽  
Mohd Fuad Miskon ◽  
...  

AbstractIn many cases of wave structure interactions, three-dimensional models are used to demonstrate real-life complex environments in large domain scales. In the seakeeping context, predicting the motion responses in the interaction of a long body resembling a ship structure with regular waves is crucial and can be challenging. In this work, regular waves interacting with a rigid floating structure were simulated using the open-source code based on the weakly compressible smoothed particle hydrodynamics (WCSPH) method, and optimal parameters were suggested for different wave environments. Vertical displacements were computed, and their response amplitude operators (RAOs) were found to be in good agreement with experimental, numerical, and analytical results. Discrepancies of numerical and experimental RAOs tended to increase at low wave frequencies, particularly at amidships and near the bow. In addition, the instantaneous wave contours of the surrounding model were examined to reveal the effects of localized waves along the structure and wave dissipation. The results indicated that the motion response from the WCSPH responds well at the highest frequency range (ω > 5.235 rad/s).


Author(s):  
Esmaeil Hasanvand ◽  
Pedram Edalat

AbstractThe mooring and riser system is the most critical part of an offshore oil terminal. Traditionally, these two parts are designed separately without considering the nonlinear interaction between them. Thus, the present paper aims to develop an integrated design process for riser systems with a lazy-S configuration and mooring systems in the offshore catenary anchor leg mooring (CALM) oil terminal. One of the important criteria considered in this integrated design is the offset diagram and safe operation zone (SAFOP) related to the mooring system and the riser, respectively. These two diagrams are obtained separately by different analyses; therefore, codes or standards are available separately for two components. In this methodology, the diagrams of both risers and mooring lines are incorporated into a single spiral, thus identifying the safe and failure zones of risers and the mooring lines of the oil terminal. This, in turn, leads to substantial benefits in terms of overall system response, cost reduction, and safety to the offshore oil terminal. To implement this process, three different riser lengths with the lazy-S configuration are considered at three different sea depths at the terminal installation site. For each condition, the integrated design of the mooring system and riser is executed according to the derived procedure. Then, coupled dynamic models, wherein both buoys and hoses are included, are developed using OrcaFlex. Results show that the criteria of the relevant regulations are not satisfied by reducing the length of the riser relative to the designed size. Further, as water depth increases, this type of riser configuration shows good coupled performance while interacting with the mooring system. In the cross offset mode, the maximum margin is created between the offset diagram and the SAFOP diagram, while the most critical dynamic response of the tanker and terminal system occurs in the near and far modes. Therefore, with this method, the best position for the riser direction with the tanker direction is 90° in the best case.


Sign in / Sign up

Export Citation Format

Share Document