scholarly journals The Cardinality of the Set of Zeros of Homogeneous Linear Recurring Sequences over Finite Fields

2017 ◽  
Vol 9 (2) ◽  
pp. 56
Author(s):  
Yasanthi Kottegoda ◽  
Robert Fitzgerald

Consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on the irreducible characteristic polynomial of degree $d$ and order $m$. We give upper and lower bounds, and in some cases the exact values of the cardinality of the set of zeros of the sequences within its least period. We also prove that the cyclotomy bound introduced here is the best upper bound as it is reached in infinitely many cases. In addition, the exact number of occurrences of zeros is determined using the correlation with irreducible cyclic codes when $(q^{d}-1)/ m$ follows the quadratic residue conditions and also when it has the form $q^{2a}-q^{a}+1$ where $a\in \mathbb{N}$.

2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Yasanthi Kottegoda

We consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on an irreducible characteristic polynomial of degree $n$ and order $m$. Let $t=(q^{n}-1)/ m$. We use quadratic forms over finite fields to give the exact number of occurrences of zeros of the sequence within its least period when $t$ has q-adic weight 2. Consequently we prove that the cardinality of the set of zeros for sequences from this category is equal to two.


1985 ◽  
Vol 40 (10) ◽  
pp. 1052-1058 ◽  
Author(s):  
Heinz K. H. Siedentop

An upper bound on the dimension of eigenspaces of multiparticle Schrödinger operators is given. Its relation to upper and lower bounds on the eigenvalues is discussed.


10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yuqian Lin ◽  
Qin Yue ◽  
Yansheng Wu

Let Fq be a finite field with q elements and n a positive integer. In this paper, we use matrix method to give all primitive idempotents of irreducible cyclic codes of length n, whose prime divisors divide q-1.


2017 ◽  
Vol 7 (2) ◽  
pp. 169-181
Author(s):  
Audra McMillan ◽  
Adam Smith

Abstract Block graphons (also called stochastic block models) are an important and widely studied class of models for random networks. We provide a lower bound on the accuracy of estimators for block graphons with a large number of blocks. We show that, given only the number $k$ of blocks and an upper bound $\rho$ on the values (connection probabilities) of the graphon, every estimator incurs error ${\it{\Omega}}\left(\min\left(\rho, \sqrt{\frac{\rho k^2}{n^2}}\right)\right)$ in the $\delta_2$ metric with constant probability for at least some graphons. In particular, our bound rules out any non-trivial estimation (that is, with $\delta_2$ error substantially less than $\rho$) when $k\geq n\sqrt{\rho}$. Combined with previous upper and lower bounds, our results characterize, up to logarithmic terms, the accuracy of graphon estimation in the $\delta_2$ metric. A similar lower bound to ours was obtained independently by Klopp et al.


Author(s):  
Yilun Shang

We consider the random graph modelG(w)for a given expected degree sequencew=(w1,w2,…,wn). Warmth, introduced by Brightwell and Winkler in the context of combinatorial statistical mechanics, is a graph parameter related to lower bounds of chromatic number. We present new upper and lower bounds on warmth ofG(w). In particular, the minimum expected degree turns out to be an upper bound of warmth when it tends to infinity and the maximum expected degreem=O(nα)with0<α<1/2.


Author(s):  
Somphong Jitman ◽  
Aunyarut Bunyawat ◽  
Supanut Meesawat ◽  
Arithat Thanakulitthirat ◽  
Napat Thumwanit

A family of good punctured polynomials is introduced. The complete characterization and enumeration of such polynomials are given over the binary fieldF2. Over a nonbinary finite fieldFq, the set of good punctured polynomials of degree less than or equal to2are completely determined. Forn≥3, constructive lower bounds of the number of good punctured polynomials of degreenoverFqare given.


2015 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Ali H. Hakami

Let $m$ be a positive integer with $m &lt; p/2$ and $p$ is a prime. Let $\mathbb{F}_q$ be the finite field in $q = p^f$ elements, $Q({\mathbf{x}})$ be a nonsinqular quadratic form over $\mathbb{F}_q$ with $q$ odd, $V$ be the set of points in $\mathbb{F}_q^n$ satisfying the equation $Q({\mathbf{x}}) = 0$ in which the variables are restricted to a box of points of the type\[\mathcal{B}(m) = \left\{ {{\mathbf{x}} \in \mathbb{F}_q^n \left| {x_i  = \sum\limits_{j = 1}^f {x_{ij} \xi _j } ,\;\left| {x_{ij} } \right| &lt; m,\;1 \leqslant i \leqslant n,\;1 \leqslant j \leqslant f} \right.} \right\},\]where $\xi _1 , \ldots ,\xi _f$ is a basis for $\mathbb{F}_q$ over $\mathbb{F}_p$ and $n &gt; 2$ even. Set $\Delta  = \det Q$ such that $\chi \left( {( - 1)^{n/2} \Delta } \right) = 1.$ We shall motivate work of (Cochrane, 1986) to obtain lower bounds on $m,$ size of the box $\mathcal{B},$ so that $\mathcal{B} \cap V$ is nonempty. For this we show that the box $\mathcal{B}(m)$ contains a zero of $Q({\mathbf{x}})$ provided that $m \geqslant p^{1/2}.$ We also show that the box $\mathcal{B}(m)$ contains $n$ linearly independent zeros of $Q({\mathbf{x}})$ provided that $m \geqslant 2^{n/2} p^{1/2} .$


2018 ◽  
Vol 10 (03) ◽  
pp. 1850031 ◽  
Author(s):  
Supawadee Prugsapitak ◽  
Somphong Jitman

Self-dual cyclic codes form an important class of linear codes. It has been shown that there exists a self-dual cyclic code of length [Formula: see text] over a finite field if and only if [Formula: see text] and the field characteristic are even. The enumeration of such codes has been given under both the Euclidean and Hermitian products. However, in each case, the formula for self-dual cyclic codes of length [Formula: see text] over a finite field contains a characteristic function which is not easily computed. In this paper, we focus on more efficient ways to enumerate self-dual cyclic codes of lengths [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are positive integers. Some number theoretical tools are established. Based on these results, alternative formulas and efficient algorithms to determine the number of self-dual cyclic codes of such lengths are provided.


1964 ◽  
Vol 31 (4) ◽  
pp. 667-675 ◽  
Author(s):  
Philip G. Hodge

A long circular cylindrical shell is to be pierced with a circular cutout, and it is desired to design a plane annular reinforcing ring which will restore the shell to its initial strength. Upper and lower bounds on the design of the reinforcement are obtained. Although these bounds are far a part, it is conjectured that the upper bound, in addition to being safe, is reasonably close to the minimum weight design. Some suggestions for further work on the problem are advanced.


Sign in / Sign up

Export Citation Format

Share Document