scholarly journals Upper semicontinuity of the attractor for lattice dynamical systems of partly dissipative reaction diffusion systems

2005 ◽  
Vol 2005 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Ahmed Y. Abdallah

We investigate the existence of a global attractor and its upper semicontinuity for the infinite-dimensional lattice dynamical system of a partly dissipative reaction diffusion system in the Hilbert spacel2×l2. Such a system is similar to the discretized FitzHugh-Nagumo system in neurobiology, which is an adequate justification for its study.

2008 ◽  
Vol 18 (03) ◽  
pp. 695-716 ◽  
Author(s):  
BIXIANG WANG

We study the asymptotic behavior of nonautonomous discrete Reaction–Diffusion systems defined on multidimensional infinite lattices. We show that the nonautonomous systems possess uniform attractors which attract all solutions uniformly with respect to the translations of external terms when time goes to infinity. These attractors are compact subsets of weighted spaces, and contain all bounded solutions of the system. The upper semicontinuity of the uniform attractors is established when an infinite-dimensional reaction–diffusion system is approached by a family of finite-dimensional systems. We also examine the limiting behavior of lattice systems with almost periodic, rapidly oscillating external terms in weighted spaces. In this case, it is proved that the uniform global attractors of nonautonomous systems converge to the global attractor of an averaged autonomous system.


2021 ◽  
Vol 41 (4) ◽  
pp. 539-570
Author(s):  
Jacson Simsen ◽  
Mariza Stefanello Simsen ◽  
Petra Wittbold

This work concerns the study of asymptotic behavior of coupled systems of \(p(x)\)-Laplacian differential inclusions. We obtain that the generalized semiflow generated by the coupled system has a global attractor, we prove continuity of the solutions with respect to initial conditions and a triple of parameters and we prove upper semicontinuity of a family of global attractors for reaction-diffusion systems with spatially variable exponents when the exponents go to constants greater than 2 in the topology of \(L^{\infty}(\Omega)\) and the diffusion coefficients go to infinity.


Sign in / Sign up

Export Citation Format

Share Document