scholarly journals Ordered groups with greatest common divisors theory

2000 ◽  
Vol 24 (7) ◽  
pp. 469-479
Author(s):  
Jiří Močkoř

An embedding (called aGCD theory) of partly ordered abelian groupGinto abelian l-groupΓis investigated such that any element ofΓis an infimum of a subset (possible non-finite) fromG. It is proved that a GCD theory need not be unique. Acomplete GCD theoryis introduced and it is proved thatGadmits a complete GCD theory if and only if it admits a GCD theoryG→Γsuch thatΓis an Archimedean l-group. Finally, it is proved that a complete GCD theory is unique (up too-isomorphisms) and that a po-group admits the complete GCD theory if and only if anyv-ideal isv-invertible.

1972 ◽  
Vol 18 (1) ◽  
pp. 81-83
Author(s):  
I. W. Wright

In this paper it is shown that divisibility of a complete lattice ordered (abelian) group is closely related to the existence of a sufficient number of small elements in the positive cone.We shall denote the set of all real numbers by R which symbol will be reserved for this purpose. All terms used are as defined in Birkhoff(1). For the reader's convenience we now define the two terms most used in the sequel.


1975 ◽  
Vol 19 (1) ◽  
pp. 62-73 ◽  
Author(s):  
B. F. Sherman

This paper concerns the completions of partially ordered groups introduced by Fuchs (1965a) and the author (to appear); the p.o. groups under consideration are, generally, abelian tight Riesz groups, and so, throughout, the word “group” will refer to an abelian group.In section 3 we meet the cornerstone of the work, the central product theorem, by means of which we can interpret the Cauchy completion of a tight Riesz group in terms of the completion of any of its o-ideals; one particularly important case arises when the group has a minimal o-ideal. Such a minimal o-ideal is o-simple, and in section 6 the completion of an isolated o-simple tight Riesz group is shown to be a tight Riesz real vector space.


1999 ◽  
Vol 64 (3) ◽  
pp. 991-1027 ◽  
Author(s):  
Françoise Delon ◽  
Patrick Simonetta

AbstractAn Ax-Kochen-Ershov principle for intermediate structures between valued groups and valued fields.We will consider structures that we call valued B-groups and which are of the form 〈G, B, *, υ〉 where– G is an abelian group,– B is an ordered group,– υ is a valuation denned on G taking its values in B,– * is an action of B on G satisfying: ∀x ϵ G ∀ b ∈ B υ(x * b) = ν(x) · b.The analysis of Kaplanski for valued fields can be adapted to our context and allows us to formulate an Ax-Kochen-Ershov principle for valued B-groups: we axiomatise those which are in some sense existentially closed and also obtain many of their model-theoretical properties. Let us mention some applications:1. Assume that υ(x) = υ(nx) for every integer n ≠ 0 and x ϵ G, B is solvable and acts on G in such a way that, for the induced action, Z[B] ∖ {0} embeds in the automorphism group of G. Then 〈G, B, *, υ〉 is decidable if and only if B is decidable as an ordered group.2. Given a field k and an ordered group B, we consider the generalised power series field k((B)) endowed with its canonical valuation. We consider also the following structure:where k((B))+ is the additive group of k((B)), S is a unary predicate interpreting {Tb ∣ b ϵB}, and ×↾k((B))×S is the multiplication restricted to k((B)) × S, structure which is a reduct of the valued field k((B)) with its canonical cross section. Then our result implies that if B is solvable and decidable as an ordered group, then M is decidable.3. A valued B–group has a residual group and our Ax-Kochen-Ershov principle remains valid in the context of expansions of residual group and value group. In particular, by adding a residual order we obtain new examples of solvable ordered groups having a decidable theory.


10.37236/581 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

An undirected graph is called integral, if all of its eigenvalues are integers. Let $\Gamma =Z_{m_1}\otimes \ldots \otimes Z_{m_r}$ be an abelian group represented as the direct product of cyclic groups $Z_{m_i}$ of order $m_i$ such that all greatest common divisors $\gcd(m_i,m_j)\leq 2$ for $i\neq j$. We prove that a Cayley graph $Cay(\Gamma,S)$ over $\Gamma$ is integral, if and only if $S\subseteq \Gamma$ belongs to the the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. It is also shown that every $S\in B(\Gamma)$ can be characterized by greatest common divisors.


2021 ◽  
Vol 13 (1) ◽  
pp. 182-191
Author(s):  
Tamás Glavosits ◽  
Zsolt Karácsony
Keyword(s):  

Abstract We show that the sum of two intervals in an ordered dense Abelian group is also an interval such that the endpoints of the sum are equal to the sums of the endpoints. We prove analogous statements concerning to the product of two intervals.


Sign in / Sign up

Export Citation Format

Share Document