scholarly journals Cyclotomic equations and square properties in rings

Author(s):  
Benjamin Fine

IfRis a ring, the structure of the projective special linear groupPSL2(R)is used to investigate the existence of sum of square properties holding inR. Rings which satisfy Fermat's two-square theorem are called sum of squares rings and have been studied previously. The present study considers a related property called square property one. It is shown that this holds in an infinite class of rings which includes the integers, polynomial rings over many fields andZpnwherePis a prime such that−3is not a squaremodp. Finally, it is shown that the class of sum of squares rings and the class satisfying square property one are non-coincidental.

2008 ◽  
Vol 7 (4) ◽  
pp. 723-734
Author(s):  
Adrien Deloro

AbstractWe establish an identification result of the projective special linear group of dimension 2 among a certain class of groups the Morley rank of which is finite.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850149
Author(s):  
Seyyed Majid Jafarian Amiri ◽  
Hojjat Rostami

In this paper, we find the number of the element centralizers of a finite group [Formula: see text] such that the central factor of [Formula: see text] is the projective special linear group of degree 2 or the Suzuki group. Our results generalize some main results of [Ashrafi and Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (2005) 217–227; Schmidt, Zentralisatorverbände endlicher Gruppen, Rend. Sem. Mat. Univ. Padova 44 (1970) 97–131; Zarrin, On element centralizers in finite groups, Arch. Math. 93 (2009) 497–503]. Also, we give an application of these results.


1977 ◽  
Vol 24 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Saad Adnan

AbstractIn this paper we present a characterization of PSL(2,7) by a condition different from that given in our previous paper.


2014 ◽  
Vol 51 (1) ◽  
pp. 83-91
Author(s):  
Milad Ahanjideh ◽  
Neda Ahanjideh

Let V be the 2-dimensional column vector space over a finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document} (where q is necessarily a power of a prime number) and let ℙq be the projective line over \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. In this paper, it is shown that GL2(q), for q ≠ 3, and SL2(q) acting on V − {0} have the strict EKR property and GL2(3) has the EKR property, but it does not have the strict EKR property. Also, we show that GLn(q) acting on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( {\mathbb{F}_q } \right)^n - \left\{ 0 \right\}$$ \end{document} has the EKR property and the derangement graph of PSL2(q) acting on ℙq, where q ≡ −1 (mod 4), has a clique of size q + 1.


1985 ◽  
Vol 28 (4) ◽  
pp. 397-400 ◽  
Author(s):  
Erich W. Ellers

AbstractThe projective special linear group PSL(V) is generated by dations. Among all factorizations of p ∈ PSL(V) into dations there will be one (or more) with the least number of factors. We determine this number, i.e. we solve the length problem for the projective special linear group. We solve a similar problem for the projective unimodular group which is generated by harmonic homologies. The projective special linear group and the projective unimodular group are the most important special cases of projective hyperreflection groups. We also solve the length problem for the general case.


Sign in / Sign up

Export Citation Format

Share Document