scholarly journals Finite, primitive and euclidean spaces

1988 ◽  
Vol 1 (3) ◽  
pp. 177-196 ◽  
Author(s):  
Efim Khalimsky

Integer and digital spaces are playing a significant role in digital image processing, computer graphics, computer tomography, robot vision, and many other fields dealing with finitely or countable many objects. It is proven here that every finite T0-space is a quotient space of a subspace of some simplex, i.e. of some subspace of a Euclidean space. Thus finite and digital spaces can be considered as abstract simplicial structures of subspaces of Euclidean spaces. Primitive subspaces of finite, digital, and integer spaces are introduced. They prove to be useful in the investigation of connectedness structure, which can be represented as a poset, and also in consideration of the dimension of finite spaces. Essentially T0-spaces and finitely connected and primitively path connected spaces are discussed.

Author(s):  
Danka Lučić ◽  
Enrico Pasqualetto ◽  
Tapio Rajala

AbstractIn the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.


1981 ◽  
Vol 4 (4) ◽  
pp. 823-825
Author(s):  
Larry L. Herrington ◽  
Paul E. Long

M. K. Singal and Asha Rani Singal have defined an almost-continuous functionf:X→Yto be one in which for eachx∈Xand each regular-open setVcontainingf(x), there exists an openUcontainingxsuch thatf(U)⊂V. A spaceYmay now be defined to be almost-continuous path connected if for eachy0,y1∈Ythere exists an almost-continuousf:I→Ysuch thatf(0)=y0andf(1)=y1An investigation of these spaces is made culminating in a theorem showing when the almost-continuous path connected components coincide with the usual components ofY.


2019 ◽  
Vol 62 (1) ◽  
pp. 71-74
Author(s):  
Tadeusz Figiel ◽  
William Johnson

AbstractA precise quantitative version of the following qualitative statement is proved: If a finite-dimensional normed space contains approximately Euclidean subspaces of all proportional dimensions, then every proportional dimensional quotient space has the same property.


Author(s):  
Ali Hyder ◽  
Gabriele Mancini ◽  
Luca Martinazzi

AbstractWe study the metrics of constant $Q$-curvature in the Euclidean space with a prescribed singularity at the origin, namely solutions to the equation \begin{equation*} (-\Delta)^{\frac{n}{2}}w=e^{nw}-c\delta_{0} \ \textrm{on}\ {\mathbb{R}}^n, \end{equation*}under a finite volume condition. We analyze the asymptotic behavior at infinity and the existence of solutions for every $n\ge 3$ also in a supercritical regime. Finally, we state some open problems.


2020 ◽  
Vol 102 (3) ◽  
pp. 506-516
Author(s):  
CESAR A. IPANAQUE ZAPATA ◽  
JESÚS GONZÁLEZ

In robotics, a topological theory of motion planning was initiated by M. Farber. We present optimal motion planning algorithms which can be used in designing practical systems controlling objects moving in Euclidean space without collisions between them and avoiding obstacles. Furthermore, we present the multi-tasking version of the algorithms.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 710 ◽  
Author(s):  
Bang-Yen Chen

The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in E 3 . Also, Hasanis and Vlachos proved that biharmonic hypersurfaces in E 4 ; and Dimitric proved that biharmonic hypersurfaces in E m with at most two distinct principal curvatures. Chen and Munteanu showed that the conjecture is true for δ ( 2 ) -ideal and δ ( 3 ) -ideal hypersurfaces in E m . Further, Fu proved that the conjecture is true for hypersurfaces with three distinct principal curvatures in E m with arbitrary m. In this article, we provide another solution to the conjecture, namely, we prove that biharmonic surfaces do not exist in any Euclidean space with parallel normalized mean curvature vectors.


Sign in / Sign up

Export Citation Format

Share Document