Abstract 1413: Interleukin-1β promotes brain metastasis of breast cancer by activating Notch signaling through reactive astrocytes

Author(s):  
Fei Xing ◽  
Hiroshi Okuda ◽  
Eiji Furuta ◽  
Misako Watabe ◽  
Aya Kobayashi ◽  
...  
Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

2018 ◽  
Vol 13 (3) ◽  
pp. 348-359 ◽  
Author(s):  
Maricruz Anaya-Ruiz ◽  
Cindy Bandala ◽  
Patricia Martinez-Morales ◽  
Gerardo Landeta ◽  
Rebeca D. Martinez-Contreras ◽  
...  

2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
S Keelan ◽  
S Charmsaz ◽  
S Purcell ◽  
D Varešlija ◽  
S Cocchiglia ◽  
...  

Abstract Introduction Brain metastasis (BrM) occurs in 10-30% of patients with advanced breast cancer (BC). BrM is increasing in incidence and confers a poor prognosis. We aimed to investigate the contribution of global epi-transcriptomic alterations in N6-methyladenosine (m6A) RNA-methylation as a therapeutic target in brain metastatic breast cancer. Method In preliminary studies we have demonstrated m6A demethylase – FTO as the main contributor to the progression of ER+ breast cancer. Furthermore an association between FTO and reduced disease-free-survival (n=870, p=0.018) was observed. Here we conducted an epigenetic inhibitor screen using two therapeutic agents, ethyl-ester-meclofenamic acid (MA2) and FB23-2 on matched 2D cell line, 3D organoid cultures and patient-derived xenografts (PDX) explant models of brain metastasis. Result Upon integration of mapped global RNA methylation landscape with matched proteomic analysis, we observed genome-wide RNA hypo-methylation of key pluripotency genes, including SOX2 and KLF4, as key players underlying tumour progression to the brain.  Genetic and pharmacological inhibition of FTO in novel ex vivo models of BrM significantly reduced protein expression levels of KLF4 and SOX2. Moreover, pharmacological inhibition of FTO with MA2 and FB23-2, inhibited cell proliferation in endocrine-resistant BC and patient BrM cells. We translate our findings to the clinic by demonstrating the efficacy of anti-FTO therapies in several unique PDX and 3D organoid BrM models. Conclusion Our results reveal epi-transcriptional remodelling events as a key mechanism in BrM. This study establishes an early role for targeting RNA methylation in the management of disease progression and presents FTO as a potential therapeutic target in BrM. Take-home message This study establishes an early role for targeting RNA methylation in the management of disease progression and presents FTO as a potential therapeutic target in brain metastatic breast cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Jhih-Kai Pan ◽  
Cheng-Han Lin ◽  
Yao-Lung Kuo ◽  
Luo-Ping Ger ◽  
Hui-Chuan Cheng ◽  
...  

AbstractBrian metastasis, which is diagnosed in 30% of triple-negative breast cancer (TNBC) patients with metastasis, causes poor survival outcomes. Growing evidence has characterized miRNAs involving in breast cancer brain metastasis; however, currently, there is a lack of prognostic plasma-based indicator for brain metastasis. In this study, high level of miR-211 can act as brain metastatic prognostic marker in vivo. High miR-211 drives early and specific brain colonization through enhancing trans-blood–brain barrier (BBB) migration, BBB adherence, and stemness properties of tumor cells and causes poor survival in vivo. SOX11 and NGN2 are the downstream targets of miR-211 and negatively regulate miR-211-mediated TNBC brain metastasis in vitro and in vivo. Most importantly, high miR-211 is correlated with poor survival and brain metastasis in TNBC patients. Our findings suggest that miR-211 may be used as an indicator for TNBC brain metastasis.


2020 ◽  
Author(s):  
Hamid Ehsan ◽  
Hassaan Imtiaz ◽  
Muhammad Khawar Sana ◽  
Muhammad Mubbashir Sheikh ◽  
Ahsan Wahab

2014 ◽  
Vol 25 (3) ◽  
pp. 474-481 ◽  
Author(s):  
Ren-Hua Yeh ◽  
Jyh-Cherng Yu ◽  
Chi-Hong Chu ◽  
Ching-Liang Ho ◽  
Hung-Wen Kao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document