interleukin 1β
Recently Published Documents


TOTAL DOCUMENTS

4824
(FIVE YEARS 517)

H-INDEX

145
(FIVE YEARS 11)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Guan-Xuan Wu ◽  
Chun-Yu Chen ◽  
Chun-Shien Wu ◽  
Lain-Chyr Hwang ◽  
Shan-Wei Yang ◽  
...  

Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol’s effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Dianbo Long ◽  
Yiyang Xu ◽  
Guping Mao ◽  
Ruobing Xin ◽  
Zengfa Deng ◽  
...  

AbstracttRNA-derived fragments (tRFs) are new noncoding RNAs, and recent studies have shown that tRNAs and tRFs have important functions in cell metabolism via posttranscriptional regulation of gene expression. However, whether tRFs regulate cellular metabolism of the anterior cruciate ligament (ACL) remains elusive. The aim of this study was to investigate the role and action mechanism of tRFs in ACL cell metabolism. A tRF array was used to determine tRF expression profiles in different human ACL cells, and quantitative real-time polymerase chain reaction and fluorescence in situ hybridisation were used to determine TRF365 expression. ACL cells were transfected with a TRF365 mimic or a TRF365 inhibitor to determine whether TRF365 regulates IKBKB expression. A rescue experiment and dual-luciferase reporter assay were conducted to determine whether the 3′-untranslated region (UTR) of IKBKB has a TRF365-binding site. TRF365 was weakly expressed in osteoarthritis (OA) ACL and interleukin-1β-treated ACL cells. IKBKB was highly expressed in OA ACL and interleukin-1β-treated ACL cells; transfection with the TRF365 mimic suppressed IKBKB expression, whereas transfection with the TRF365 inhibitor had the opposite effect. A dual-luciferase reporter assay showed that TRF365 silenced the expression of IKBKB by binding to its 3′-UTR. Thus, TRF365 regulates the metabolism of ACL cells by targeting IKBKB. In summary, TRF365 may provide a new direction for the study of ACL degeneration and on the pathophysiological process of OA.


Gut Microbes ◽  
2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Wan-Jung H. Wu ◽  
Myunghoo Kim ◽  
Lin-Chun Chang ◽  
Adrien Assie ◽  
Fatima B. Saldana-Morales ◽  
...  

2022 ◽  
Vol 31 (1) ◽  
pp. 1-6
Author(s):  
Alshimaa Abdallah ◽  
Hanaa El Maghraby ◽  
Mohamed El Gandy ◽  
Marwa Shabana ◽  
Heba Mohammed

2021 ◽  
Vol 22 (24) ◽  
pp. 13544
Author(s):  
Mikhail V. Onufriev ◽  
Yulia V. Moiseeva ◽  
Marina Y. Zhanina ◽  
Natalia A. Lazareva ◽  
Natalia V. Gulyaeva

Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic–pituitary–adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.


Sign in / Sign up

Export Citation Format

Share Document