Direct Actions of Estradiol on the Anterior Pituitary Gland Are Required for Hypothalamus-Dependent Lactotrope Proliferation and Secretory Surges of Luteinizing Hormone but Not of Prolactin in Female Rats

2002 ◽  
Vol 75 (6) ◽  
pp. 392-401 ◽  
Author(s):  
Ping Yin ◽  
Kengo Kawashima ◽  
Jun Arita
1978 ◽  
Vol 76 (2) ◽  
pp. 361-362 ◽  
Author(s):  
J. RABII ◽  
D. K. CLIFTON ◽  
C. H. SAWYER

Department of Anatomy and Brain Research Institute, UCLA School of Medicine, Los Angeles, California 90024, U.S.A. (Received 21 July 1977) The existence of a 'critical period' in the ovulatory surge of pituitary gonadotrophin during the afternoon of pro-oestrus was demonstrated by Everett, Sawyer & Markee (1949). It was assumed that during this period, between 14.00 and 16.00 h, an amount of gonadotrophin sufficient to cause ovulation was released from the anterior pituitary gland. Administration of a number of neuropharmacologically active drugs before or during the 'critical period' was shown to inhibit the ovulatory response (Everett, 1961). Recently, Blake (1974) described the existence of an 'activation period' as well as a 'potential activation period' for the preovulatory release of luteinizing hormone (LH) in female rats. The 'activation period' is an extended 'critical period', from 14.00 to 17.00 h, during which time a neurohumoral signal continues to stimulate the anterior pituitary gland


1981 ◽  
Vol 91 (2) ◽  
pp. 347-351 ◽  
Author(s):  
R. MEIDAN ◽  
G. FINK ◽  
Y. KOCH

The ontogeny of the facilitatory effect of oestradiol and luteinizing hormone releasing hormone (LH-RH) on the responsiveness of the anterior pituitary gland to LH-RH has been studied in vitro using pituitary glands from female rats aged 15, 17, 20, 31, 35 and 38 days. The facilitatory effect of oestradiol was already well established by day 15, while the facilitatory effect of LH-RH (priming effect) developed only after day 17. Although it increased the overall response of the gland to LH-RH, oestradiol did not selectively enhance the priming effect of LH-RH. Both the effect of oestradiol and LH-RH reached a peak on day 25, 7 days before vaginal opening in this colony, and, as assessed by measuring pituitary LH contents, were not dependent upon the synthesis of LH. These data show that different mechanisms may be involved in the facilitation of pituitary responsiveness by oestradiol and LH-RH, but that both mechanisms appear to depend more upon an increase in the sensitivity of the receptor/release apparatus rather than in the gonadotrophin content of the gonadotrophs.


1995 ◽  
Vol 146 (2) ◽  
pp. 293-300 ◽  
Author(s):  
J M M Rondeel ◽  
W Klootwijk ◽  
E Linkels ◽  
P H M Jeucken, W ◽  
L J Hofland ◽  
...  

Abstract Recent evidence shows that thyrotrophin-releasing hormone (TRH) immunoreactivity in the rat anterior pituitary gland is accounted for by the TRH-like tripeptide prolineamide-glutamyl-prolineamide (pGlu-Glu-ProNH2, <EEP-NH2). The present study was undertaken to investigate further the regulation, localization and possible intrapituitary function of <EEP-NH2. Anterior pituitary levels of <EEP-NH2 were determined between days 5 and 35 of life, during the oestrous cycle and after treatment with the luteinizing hormone-releasing hormone (LHRH) antagonist Org 30276. Treatment of adult males with the LHRH antagonist either for 1 day (500 μg/100 g body weight) or for 5 days (50 μg/100 g body weight) reduced anterior pituitary <EEP-NH2 levels by 25–30% (P<0·05 versus saline-treated controls). Anterior pituitary <EEP-NH2 increased between days 5 and 35 of life. In females, these levels were 2- to 3-fold higher (P<0·05) than in males between days 15 and 25 after birth; these changes corresponded with the higher plasma follicle-stimulating hormone (FSH) levels in the female rats. After day 25, <EEP-NH2 levels in female rats decreased in parallel with a decrease in plasma FSH. Injections with the LHRH antagonist (500 μg/100 g body weight), starting on day 22 of life, led to reduced contents of <EEP-NH2 in the anterior pituitary gland of female rats on days 26 and 30 (55 and 35% decrease respectively). Levels of <EEP-NH2 in the anterior pituitary gland did not change significantly during the oestrous cycle. Fractionation of anterior pituitary cells by unit gravity sedimentation was found to be compatible with the localization of <EEP-NH2 in gonadotrophs. In vitro, <EEP-NH2 dose-dependently inhibited TRH-stimulated growth hormone (GH) release from anterior pituitary cells obtained from neonatal rats, but no consistent effects were seen on the in vitro release of luteinizing hormone (LH), FSH, prolactin (PRL) or thyroid-stimulating hormone (TSH) under basal or TRH/LHRH-stimulated conditions. Furthermore, <EEP-NH2 did not affect the in vitro hormone release by anterior pituitary cells obtained from adult rats. In vivo, <EEP-NH2 (0·3–1·0 μg intravenously) did not affect plasma PRL, TSH, LH, FSH and GH in adult male rats. We conclude that <EEP-NH2 in the anterior pituitary gland is regulated by LHRH, is probably localized in gonadotrophs and may play a (paracrine) role in neonatal GH release. Journal of Endocrinology (1995) 146, 293–300


2004 ◽  
Vol 287 (5) ◽  
pp. E818-E819 ◽  
Author(s):  
H. Maurice Goodman

This essay looks at the historical significance of an APS classic paper that is freely available online: Fevold HL, Hisaw FL, Leonard SL. The gonad stimulating and the luteinizing hormones of the anterior lobe of the hypophesis. Am J Physiol 97: 291—301, 1931 ( http://ajplegacy.physiology.org/cgi/reprint/97/2/291 ).


Sign in / Sign up

Export Citation Format

Share Document