hormone release
Recently Published Documents


TOTAL DOCUMENTS

2459
(FIVE YEARS 77)

H-INDEX

90
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 908
Author(s):  
Zuzana Romanova ◽  
Natasa Hlavacova ◽  
Daniela Jezova

There is no doubt that chronic stress accompanied by adrenocortical stress hormone release affects the development and treatment outcome of several mental disorders. Less attention has been paid to the effects of psychotropic drugs on adrenocortical steroids, particularly in clinical studies. This review focuses on the knowledge related to the possible modulation of cortisol and aldosterone secretion under non-stress and stress conditions by antipsychotic drugs, which are being used in the treatment of several psychotic and affective disorders. The molecular mechanisms by which antipsychotic drugs may influence steroid stress hormones include the modulation of central and/or adrenocortical dopamine and serotonin receptors, modulation of inflammatory cytokines, influence on regulatory mechanisms in the central part of the hypothalamic-pituitary axis, inhibition of corticotropin-releasing hormone gene promoters, influencing glucocorticoid receptor-mediated gene transcription, indirect effects via prolactin release, alteration of signaling pathways of glucocorticoid and mineralocorticoid actions. Clinical studies performed in healthy subjects, patients with psychosis, and patients with bipolar disorder suggest that single and repeated antipsychotic treatments either reduce cortisol concentrations or do not affect its secretion. A single and potentially long-term treatment with dopamine receptor antagonists, including antipsychotics, has a stimulatory action on aldosterone release.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Erin L. Wood ◽  
Sarah N. Gartner ◽  
Anica Klockars ◽  
Laura K. McColl ◽  
David G. Christian ◽  
...  

The natural 20:80 whey:casein ratio in cow’s milk (CM) for adults and infants is adjusted to reflect the 60:40 ratio of human milk, but the feeding and metabolic consequences of this adjustment have been understudied. In adult human subjects, the 60:40 CM differently affects glucose metabolism and hormone release than the 20:80 CM. In laboratory animals, whey-adapted goat’s milk is consumed in larger quantities. It is unknown whether whey enhancement of CM would have similar consequences on appetite and whether it would affect feeding-relevant brain regulatory mechanisms. In this set of studies utilizing laboratory mice, we found that the 60:40 CM was consumed more avidly than the 20:80 control formulation by animals motivated to eat by energy deprivation and by palatability (in the absence of hunger) and that this hyperphagia stemmed from prolongation of the meal. Furthermore, in two-bottle choice paradigms, whey-adapted CM was preferred against the natural 20:80 milk. The intake of the whey-adapted CM induced neuronal activation (assessed through analysis of c-Fos expression in neurons) in brain sites promoting satiation, but importantly, this activation was less pronounced than after ingestion of the natural 20:80 whey:casein CM. Activation of hypothalamic neurons synthesizing anorexigenic neuropeptide oxytocin (OT) was also less robust after the 60:40 CM intake than after the 20:80 CM. Pharmacological blockade of the OT receptor in mice led to an increase in the consumption only of the 20:80 CM, thus, of the milk that induced greater activation of OT neurons. We conclude that the whey-adapted CM is overconsumed compared to the natural 20:80 CM and that this overconsumption is associated with weakened responsiveness of central networks involved in satiety signalling, including OT.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jeff R. Jones ◽  
Sneha Chaturvedi ◽  
Daniel Granados-Fuentes ◽  
Erik D. Herzog

AbstractSignals from the central circadian pacemaker, the suprachiasmatic nucleus (SCN), must be decoded to generate daily rhythms in hormone release. Here, we hypothesized that the SCN entrains rhythms in the paraventricular nucleus (PVN) to time the daily release of corticosterone. In vivo recording revealed a critical circuit from SCN vasoactive intestinal peptide (SCNVIP)-producing neurons to PVN corticotropin-releasing hormone (PVNCRH)-producing neurons. PVNCRH neurons peak in clock gene expression around midday and in calcium activity about three hours later. Loss of the clock gene Bmal1 in CRH neurons results in arrhythmic PVNCRH calcium activity and dramatically reduces the amplitude and precision of daily corticosterone release. SCNVIP activation reduces (and inactivation increases) corticosterone release and PVNCRH calcium activity, and daily SCNVIP activation entrains PVN clock gene rhythms by inhibiting PVNCRH neurons. We conclude that daily corticosterone release depends on coordinated clock gene and neuronal activity rhythms in both SCNVIP and PVNCRH neurons.


Author(s):  
Ruhi Kabakci ◽  
Abdulkadir Kaya ◽  
Ayse Arzu Yigit ◽  
Omer Varisli

AbstractThis study is the first to investigate the effects of tebuconazole (TEB) on the physiological functions of bovine testicular cells and epididymal spermatozoa. Motility and plasma membrane integrity of spermatozoa exposed to TEB (0.001–100 µM) were evaluated at different incubation times (0–6 h), while TEB-induced spermiotoxicity was assessed after 24 h in cell cultures. Testicular cells, obtained from the parenchyma of bovine testes, were seeded at 1.0 × 104 and 1.5 × 106 cells/well in 96- and 12-well culture plates and incubated for 48 h in culture media containing TEB (0.001–100 µM) to evaluate cytotoxicity and hormone release, respectively. TEB did not affect the motility and plasma membrane integrity. However, significant spermiotoxicity occurred at higher TEB (1–100 µM) concentrations (P < 0.05) compared to control and lower doses. Although no dose caused cytotoxicity in testicular cells (P > 0.05), 1 and 100 µM TEB caused a significant increase in testosterone secretion (P < 0.05). As a result, high doses of TEB (1–100 µM) had slightly suppressive effects on spermatozoa; however, these doses had stimulatory effects on testosterone secretion by testicular cells. It appears that the disruption of hormonal homeostasis of testicular cells after TEB exposure may result in metabolic and especially reproductive adverse effects in bulls.


Neuroreport ◽  
2021 ◽  
Vol 32 (9) ◽  
pp. 792-796
Author(s):  
Xiao Chen ◽  
Huaibin Liang ◽  
Kejia Hu ◽  
Qingfang Sun ◽  
Bomin Sun ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 265-272
Author(s):  
Dorian S. Houser ◽  
Cory Champagne ◽  
Daniel E. Crocker

Stimulation of the thyroid with thyroid-stimulating hormone (TSH) is a potentially useful diagnostic of thyroid dysfunction, but little is known about the response of the thyroid to TSH stimulation in bottlenose dolphins (Tursiops truncatus). To better characterize the response of the dolphin thyroid to TSH stimulation, five adult dolphins participated in a TSH stimulation study. Dolphins voluntarily beached onto a padded mat and were given a 1.5 mg intramuscular injection of human recombinant TSH. Blood samples collected the day prior, at multiple intervals the day of, and daily for three days after the injection were analyzed via radioimmunoassay for free and total triiodothyronine (fT3 and tT3), and free and total thyroxine (fT4 and tT4). Significant increases in circulating fT3, fT4, and tT4 were observed with peaks occurring for all hormones the day after the TSH injection; maximal increases were 44%, 47%, and 23% for each hormone, respectively. Temporal patterns in the hormones potentially reflected feedback mechanisms countering the surge in fT3 following stimulation. Though recombinant human TSH was effective at stimulating hormone release, it is likely that use of dolphin or dolphin-derived TSH would enhance the clinical utility of the stimulation test, as would the development of antibodies specific to dolphin TSH.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A906-A907
Author(s):  
Aditi Thakkar ◽  
Constance Lee Chen

Abstract Radioactive iodine ablation (RAIA) therapy with Iodine-131 (I-131) is an established treatment for grave’s thyrotoxicosis. However, there is 10 to 20% chance of treatment failure. Lithium, a drug used to treat bipolar disorder, has significant effects on thyroid function. The most clinically relevant is the inhibition of thyroid hormone release. It is also known to inhibit colloid formation, and is involved in blocking organic iodine as well as thyroid hormone release from the thyroid gland without an effect on radioiodine uptake. This leads to increased radioiodine retention in the thyroid gland. Here, we present a case which exemplifies this action of lithium. A 46 year old male with a history of atrial fibrillation and grave’s disease presented to the endocrine clinic. TSH was &lt;0.01 and FT4 was 36. RAI uptake (RAIU) scan showed diffusely increased uptakes with 4 and 24 hour values of 61.2 and 54.6 %. He subsequently underwent RAI ablation with 18 mCi of I 131. He then presented three years later with persistent hyperthyroid symptoms. TSH &lt;0.01 and FT4 4.3. RAIU showed 24-h thyroid uptake of 41%. Patient opted for a second treatment with RAIA and was treated with 30 millicuries of I 131. He however continued to have clinical and biochemical evidence of thyrotoxicosis and was started on methimazole (MMI). Although he was biochemically euthyroid on MMI, he continued to complain of hyperthyroid symptoms such as palpitations, tremors and weight loss. When methimazole was briefly held six months after initiation, TSH was undetectable and FT4 had increased from 0.83 to 1.42. He subsequently underwent a third RAIU off MMI which showed normal 4 and 24 hour uptake, measuring 15.7% and 28% respectively. Patient subsequently opted for third trial of RAI ablation with lithium pretreatment. He declined surgery. He was started on lithium 900mg/day for 6 days, starting on the day of RAI ablation. He underwent RAI ablation with 45 mCi I-131. Patient tolerated the procedure well with subsequent tests indicating hypothyroidism requiring levothyroxine supplementation. Patient’s hyperthyroid symptoms resolved. Several factors affect the efficacy of radioiodide therapy for hyperthyroidism including the short persistence of radioiodide in the thyroid gland. In hyperthyroid Graves’ patients, radioactive iodide uptake is enhanced due to presence of TSH receptor antibody, however, radioiodide is also rapidly discharged because of its increased turnover. Lithium can significantly reduce the release of iodine from the thyroid gland and thus increase iodine retention. There is evidence to suggest that adjuvant lithium can increase thyroidal radioiodine uptake in patients with a low baseline RAIU (&lt; 30%). This case demonstrate that lithium can be used safely prior to RAI therapy in cases of RAI ablation failure even with low baseline RAIU.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A556-A556
Author(s):  
Brooke M Devries ◽  
Joseph Breuer ◽  
Alexandra Yaw ◽  
Brooke Jackson ◽  
Duong Nguyen ◽  
...  

Abstract Light provides the primary timing signal that enables fine-tuned behavioral and hormonal entrainment of circadian rhythms to the environment. Light is transmitted from the eye to the brain through the retinohypothalamic tract, where one target is the hypothalamic suprachiasmatic nucleus (SCN), which generates self-sustained circadian rhythms. The vasoactive intestinal polypeptide (VIP) expressing neurons of the SCN relay light information to peripheral cells and tissues through control of hormonal and nervous signals, allowing synchronization of molecular clocks located in individual cells throughout the body. Non-natural light cycles, ie shiftwork, and weakened SCN function through genetic manipulation, disrupt the body’s circadian rhythms, causing deregulated hormone release, metabolic disorders, and negative effects on reproductive systems such as irregular menstrual cycles and decreased sperm count. To further our understanding of how the SCN translates light information into neuroendocrine control of fertility, we conditionally deleted the SCN enriched transcription factor Ventral anterior homeobox 1 (Vax1) in post-developmental VIP neurons, generating Vax1-flox/flox:Vip-Cre+ (cKO) mice. To determine if the SCN timekeeping function was impacted in cKO mice, we single housed males and females with running wheels to examine activity during both 12-hour light/dark cycles and in constant darkness. Wheel-running behavior in constant darkness revealed a shortening of the endogenous free-running period (Tau) of the SCN. Aside from Tau, wheel running behaviors were comparable to controls. Weakened SCN output can negatively impact fertility. While on 12-hour light/dark cycles, we found a modest, but significant change in follicle stimulating hormone and estrogen in cKO females and a reduced sensitivity of GnRH neurons to kisspeptin in males. The changes in hormone release were associated with a slightly lengthened estrous cycle in cKO females and reduced sperm quality in cKO males. To identify the molecular origin of the shortened SCN period, we used immunohistochemistry and RNAscope to examine expression of Vip. We found that diestrus cKO females had a significant reduction in Vip expression at ZT16 and preliminary data suggest a reduction in the circadian clock gene Bmal1. Together, these studies identify a novel role of VAX1 in VIP neurons where VAX1 is required for VIP expression and circadian timekeeping. Loss of VAX1 in VIP neurons weakens SCN output, deregulating reproductive hormone release and modestly reducing reproductive function in both males and females.


Sign in / Sign up

Export Citation Format

Share Document