Does differential selection on the 5S rDNA explain why the rainbow trout sex chromosome heteromorphism is not linked to the SEX locus?

2004 ◽  
Vol 105 (1) ◽  
pp. 122-125 ◽  
Author(s):  
R.B. Phillips ◽  
M.A. Noakes ◽  
M. Morasch ◽  
A. Felip ◽  
G.H. Thorgaard

1996 ◽  
Vol 75 (2-3) ◽  
pp. 145-150 ◽  
Author(s):  
P. Moran ◽  
J.L. Martinez ◽  
E. Garcia-Vazquezm ◽  
A.M. Pendas


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1105-1113 ◽  
Author(s):  
Alicia Felip ◽  
Atushi Fujiwara ◽  
William P Young ◽  
Paul A Wheeler ◽  
Marc Noakes ◽  
...  

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Laura Ghigliotti ◽  
C.-H. Christina Cheng ◽  
Céline Bonillo ◽  
Jean-Pierre Coutanceau ◽  
Eva Pisano

Two genes, that is, 5S ribosomal sequences and antifreeze glycoprotein (AFGP) genes, were mapped onto chromosomes of eight Antarctic notothenioid fish possessing a X1X1X2X2/X1X2Y sex chromosome system, namely,Chionodraco hamatusandPagetopsis macropterus(family Channichthyidae),Trematomus hansoni,T. newnesi,T. nicolai,T. lepidorhinus, andPagothenia borchgrevinki(family Nototheniidae), andArtedidraco skottsbergi(family Artedidraconidae). Through fluorescencein situhybridization (FISH), we uncovered distinct differences in the gene content of the Y chromosomes in the eight species, withC. hamatusandP. macropterusstanding out among others in bearing 5S rDNA and AFGP sequences on their Y chromosomes, respectively. Both genes were absent from the Y chromosomes of any analyzed species. The distinct patterns of Y and non-Y chromosome association of the 5S rDNA and AFGP genes in species representing different Antarctic fish families support an independent origin of the sex heterochromosomes in notothenioids with interesting implications for the evolutionary/adaptational history of these fishes living in a cold-stable environment.



1980 ◽  
Vol 58 (5) ◽  
pp. 828-841 ◽  
Author(s):  
James J. Bull ◽  
John M. Legler

Karyotypes are presented for 13 of the 14 genera of side-necked turtles (suborder Pleurodira, families Pelomedusidae and Chelidae). Pelomedusids have low diploid numbers and few microchromosomes (2n = 26–36); the five largest chromosomes are homologous in the three genera. Chelids have high diploid numbers and many microchromosomes (2n = 50–64) and are similar in this respect to cryptodires (2n = 50–66). The pelomedusid karyotype is regarded as derived, probably from an ancestral condition like that seen in chelids. Gross karyotypic differences are slight or nil within genera and among closely related pleurodiran genera. Triploidy probably occurs in Platemys platycephala (family Chelidae) which has 96 chromosomes. No sex chromosome heteromorphism was observed.



2007 ◽  
Vol 32 (4) ◽  
pp. 763-768 ◽  
Author(s):  
G. Odierna ◽  
G. Aprea ◽  
T. Capriglione ◽  
S. Castellano ◽  
E. Balletto


2021 ◽  
Vol 15 (1) ◽  
pp. 65-76
Author(s):  
Filipe Schitini Salgado ◽  
Marina Souza Cunha ◽  
Silvana Melo ◽  
Jorge Abdala Dergam

Recent phylogenetic hypotheses within Anostomidae, based on morphological and molecular data, resulted in the description of new genera (Megaleporinus Ramirez, Birindelli et Galetti, 2017) and the synonymization of others, such as the reallocation of Leporinus copelandii Steindachner, 1875 and Leporinus steindachneri Eigenmann, 1907 to Hypomasticus Borodin, 1929. Despite high levels of conservatism of the chromosomal macrostructure in this family, species groups have been corroborated using banding patterns and the presence of different sex chromosome systems. Due to the absence of cytogenetic studies in H. copelandii (Steindachner, 1875) and H. steindachneri (Eigenmann, 1907), the goal of this study was to characterize their karyotypes and investigate the presence/absence of sex chromosome systems using different repetitive DNA probes. Cytogenetic techniques included: Giemsa staining, Ag-NOR banding and FISH using 18S and 5S rDNA probes, as well as microsatellite probes (CA)15 and (GA)15. Both species had 2n = 54, absence of heteromorphic sex chromosomes, one chromosome pair bearing Ag-NOR, 18S and 5S rDNA regions. The (CA)15 and (GA)15 probes marked mainly the subtelomeric regions of all chromosomes and were useful as species-specific chromosomal markers. Our results underline that chromosomal macrostructure is congruent with higher systematic arrangements in Anostomidae, while microsatellite probes are informative about autapomorphic differences between species.



Genome ◽  
1990 ◽  
Vol 33 (6) ◽  
pp. 818-824 ◽  
Author(s):  
David M. Green

Supernumerary chromosomes arise from portions of the normal chromosome complement through nondisjunction, fragmentation, or other mechanisms. Once present in the genome, they are subject to virtually the same genetic conditions that affect the evolutionary degeneration of heteromorphic sex chromosomes. Y or W chromosomes occur only in the presence of X or Z chromosomes, respectively, just as supernumeraries never occur except in the presence of the complete regular karyotype containing their progenitor sequences. Thus, mechanisms that can account for the evolution of sex-chromosome heteromorphism can also be invoked to explain the degeneration process of supernumerary chromosomes after their origination. Incipient supernumeraries initially have genes identical with those on progenitor chromosomes. This frees them from the evolutionary constraint of carrying nonduplicated genetic information, just as in Y and W chromosomes during early stages of sex-chromosome differentiation. The degeneration of supernumerary chromosomes may thus proceed via the mechanism of Muller's Ratchet. This hypothesis predicts that supernumerary chromosomes should lose functional loci, lose sequence homology with the regular genome, and gain heterochromatin over time, resulting in multiple heteromorphic forms of degenerate supernumeraries within and between populations, as is commonly observed.Key words: supernumerary chromosomes, B chromosomes, evolution, origin, Muller's Ratchet.



2007 ◽  
Vol 5 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Renildo R. de Oliveira ◽  
Eliana Feldberg ◽  
Maeda B. dos Anjos ◽  
Jansen Zuanon

We present karyotypic characteristics and report on the occurrence of ZZ/ZW sex chromosomes in Ancistrus ranunculus (rio Xingu) and Ancistrus sp. "Piagaçu" (rio Purus), of the Brazilian Amazon. Ancistrus ranunculus has a modal number of 2n=48 chromosomes, a fundamental number (FN) of 82 for both sexes, and the karyotypic formula was 20m+8sm+6st+14a for males and 19m+9sm+6st+14a for females. Ancistrus sp. "Piagaçu" presented 2n=52 chromosomes, FN= 78 for males and FN= 79 for females. The karyotypic formula was 16m+8sm+2st+26a for males and 16m+9sm+2st+25a for females. The high number of acrocentric chromosomes in karyotype of Ancistrus sp. "Piagaçu" differs from the majority of Ancistrini genera studied so far, and may have resulted from pericentric inversions and translocations. The lower number of chromosomes in A. ranunculus indicates that centric fusions also occurred in the evolution of Ancistrus karyotypes. We conclude that karyotypic characteristics and the presence of sex chromosomes can constitute important cytotaxonomic markers to identify cryptic species of Ancistrus. However, sex chromosomes apparently arose independently within the genus and thus do not constitute a reliable character to analyze phylogenetic relations among Ancistrus species.



Sign in / Sign up

Export Citation Format

Share Document