heteromorphic sex chromosomes
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 3)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009906
Author(s):  
M. Felicia Basilicata ◽  
Claudia Isabelle Keller Valsecchi

Diploid organisms contain a maternal and a paternal genome complement that is thought to provide robustness and allow developmental progression despite genetic perturbations that occur in heterozygosity. However, changes affecting gene dosage from the chromosome down to the individual gene level possess a significant pathological potential and can lead to developmental disorders (DDs). This indicates that expression from a balanced gene complement is highly relevant for proper cellular and organismal function in eukaryotes. Paradoxically, gene and whole chromosome duplications are a principal driver of evolution, while heteromorphic sex chromosomes (XY and ZW) are naturally occurring aneuploidies important for sex determination. Here, we provide an overview of the biology of gene dosage at the crossroads between evolutionary benefit and pathogenicity during disease. We describe the buffering mechanisms and cellular responses to alterations, which could provide a common ground for the understanding of DDs caused by copy number alterations.


Author(s):  
Julia V. Bocharkina ◽  
Oleg S. Alexandrov ◽  
Olga V. Razumova ◽  
Gennady I. Karlov

Heteromorphic sex chromosomes are rarely found in plants. They were observed only in 47 species from phylogenetically distant families, suggesting that the evolution of sex chromosomes was independent in these species. It was shown that DNA repeat sequences are one of the major factors driving sex chromosomes evolution, and an accumulation or elimination of the repetitive DNA elements are closely linked with the formation of differences in the sex chromosomes. The goal of this study was to characterize the transposon composition in male and female plants of Cannabis sativa L., Humulus lupulus L. and Humulus japonicus Siebold & Zucc. For the first time, the male and female genomes of H. japonicus as well as male genomes of H. lupulus and C. sativa have been sequenced (there were no open data about them). The analysis of genome-wide sequencing data with using Repeatexplorer2 and author’s scripts was carried out. It was shown that accumulation of Ty3-gypsy may be associated with speciation in Cannabaceae family which is the opposite of the theory of speciation throw whole-genome duplication. Moreover, the sex-specific DNA repeat clusters in C. sativa and H. japonicus were found. The analysis also revealed that the concentration of Tekay, Retand and Ikeros repeats in the Y chromosome of C. sativa is lower than in the X chromosome and the Angela concentration is higher in the Y chromosome.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1822
Author(s):  
Dominique Thépot

Among tetrapods, the well differentiated heteromorphic sex chromosomes of birds and mammals have been highly investigated and their master sex-determining (MSD) gene, Dmrt1 and SRY, respectively, have been identified. The homomorphic sex chromosomes of reptiles have been the least studied, but the gap with birds and mammals has begun to fill. This review describes our current knowledge of reptilian sex chromosomes at the cytogenetic and molecular level. Most of it arose recently from various studies comparing male to female gene content. This includes restriction site-associated DNA sequencing (RAD-Seq) experiments in several male and female samples, RNA sequencing and identification of Z- or X-linked genes by male/female comparative transcriptome coverage, and male/female transcriptomic or transcriptome/genome substraction approaches allowing the identification of Y- or W-linked transcripts. A few putative master sex-determining (MSD) genes have been proposed, but none has been demonstrated yet. Lastly, future directions in the field of reptilian sex chromosomes and their MSD gene studies are considered.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3233
Author(s):  
Azucena Claudia Reyes Lerma ◽  
František Šťáhlavský ◽  
Michael Seiter ◽  
Leonela Zusel Carabajal Paladino ◽  
Klára Divišová ◽  
...  

Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42–76 and 22–74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carolina Crepaldi ◽  
Emiliano Martí ◽  
Évelin Mariani Gonçalves ◽  
Dardo Andrea Martí ◽  
Patricia Pasquali Parise-Maltempi

Neotropical fishes have highly diversified karyotypic and genomic characteristics and present many diverse sex chromosome systems, with various degrees of sex chromosome differentiation. Knowledge on their sex-specific composition and evolution, however, is still limited. Satellite DNAs (satDNAs) are tandemly repeated sequences with pervasive genomic distribution and distinctive evolutionary pathways, and investigating satDNA content might shed light into how genome architecture is organized in fishes and in their sex chromosomes. The present study investigated the satellitome of Megaleporinus elongatus, a freshwater fish with a proposed Z1Z1Z2Z2/Z1W1Z2W2 multiple sex chromosome system that encompasses a highly heterochromatic and differentiated W1 chromosome. The species satellitome comprises of 140 different satDNA families, including previously isolated sequences and new families found in this study. This diversity is remarkable considering the relatively low proportion that satDNAs generally account for the M. elongatus genome (around only 5%). Differences between the sexes in regards of satDNA content were also evidenced, as these sequences are 14% more abundant in the female genome. The occurrence of sex-biased signatures of satDNA evolution in the species is tightly linked to satellite enrichment associated with W1 in females. Although both sexes share practically all satDNAs, the overall massive amplification of only a few of them accompanied the W1 differentiation. We also investigated the expansion and diversification of the two most abundant satDNAs of M. elongatus, MelSat01-36 and MelSat02-26, both highly amplified sequences in W1 and, in MelSat02-26’s case, also harbored by Z2 and W2 chromosomes. We compared their occurrences in M. elongatus and the sister species M. macrocephalus (with a standard ZW sex chromosome system) and concluded that both satDNAs have led to the formation of highly amplified arrays in both species; however, they formed species-specific organization on female-restricted sex chromosomes. Our results show how satDNA composition is highly diversified in M. elongatus, in which their accumulation is significantly contributing to W1 differentiation and not satDNA diversity per se. Also, the evolutionary behavior of these repeats may be associated with genome plasticity and satDNA variability between the sexes and between closely related species, influencing how seemingly homeologous heteromorphic sex chromosomes undergo independent satDNA evolution.


Plant Omics ◽  
2021 ◽  
pp. 50-56
Author(s):  
Dessireé Patricia Zerpa-Catanho ◽  
Tahira Jatt ◽  
Ray Ming

Jarilla chocola is an herbaceous plant species that belongs to the Jarilla genus and the Caricaceae family. No information on chromosome number or genome size has been reported for J. chocola that confirms the occurrence of dysploidy events and explore the existence of heteromorphic sex chromosomes. Therefore, the total number of chromosomes of this species was determined by karyotyping and counting the number of chromosomes observed, and the genome size of female and male plants was estimated separately by flow cytometry. Results showed that J. chocola has eight pairs of chromosomes (2n = 2x = 16), and its chromosomes are classified as metacentric for five pairs, submetacentric for two pairs and telocentric for one pair. The nuclear DNA content (1C-value) in picograms and diploid genome size was estimated separately from female and male plants using two species as the standards, Phaseolus vulgaris (1C = 0.60 pg) and Carica papaya (1C = 0.325 pg), to look for the possible existence of heteromorphic sex chromosomes. C. papaya proved to be a better standard for the determination of J. chocola DNA content and diploid genome size. No significant difference on the DNA content was observed between female (1C = 1.02 ± 0.003 pg) and male (1C = 1.02 ± 0.008 pg) plants. The estimated genome size of J. chocola per haploid genome in base pairs was calculated from the obtained C-values. Results showed an estimated genome size per haploid genome of 1018.44 ± 3.07 Mb and 1022.08 ± 7.76 Mb for female and male plants, respectively. Due to the observed chromosome number and genome size, only the occurrence of one of two previously reported dysploidy events in Jarilla could be confirmed for J. chocola and no evidence of heteromorphic sex chromosomes was found. These results provide fundamental information of the J. chocola genome and will expedite investigation of sex chromosomes and genome evolution in this species, the Jarilla genus and the Caricaceae family


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200105 ◽  
Author(s):  
Mitsuaki Ogata ◽  
Kazuo Suzuki ◽  
Yoshiaki Yuasa ◽  
Ikuo Miura

Sex chromosomes generally evolve from a homomorphic to heteromorphic state. Once a heteromorphic system is established, the sex chromosome system may remain stable for an extended period. Here, we show the opposite case of sex chromosome evolution from a heteromorphic to a homomorphic system in the Japanese frog Glandirana rugosa. One geographic group, Neo-ZW, has ZZ-ZW type heteromorphic sex chromosomes. We found that its western edge populations, which are geographically close to another West-Japan group with homomorphic sex chromosomes of XX-XY type, showed homozygous genotypes of sex-linked genes in both sexes. Karyologically, no heteromorphic sex chromosomes were identified. Sex-reversal experiments revealed that the males were heterogametic in sex determination. In addition, we identified another similar population around at the southwestern edge of the Neo-ZW group in the Kii Peninsula: the frogs had homomorphic sex chromosomes under male heterogamety, while shared mitochondrial haplotypes with the XY group, which is located in the east and bears heteromorphic sex chromosomes. In conclusion, our study revealed that the heteromorphic sex chromosome systems independently reversed back to or turned over to a homomorphic system around each of the western and southwestern edges of the Neo-ZW group through hybridization with the West-Japan group bearing homomorphic sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


Genome ◽  
2021 ◽  
pp. 1-12
Author(s):  
Kaleb Pretto Gatto ◽  
Lucas H.B. Souza ◽  
Juliana Nascimento ◽  
Pablo Suárez ◽  
Luciana Bolsoni Lourenço

The frog species Physalaemus ephippifer exists in the Amazonian region and harbors heteromorphic Z and W chromosomes. A genetic lineage closely related to this species was recognized based on its mitochondrial DNA and RADseq-style markers, but its taxonomic status is still unclear and has been referred to as Lineage 1 of “P. cuvieri”. The heteromorphic sex chromosomes found in P. ephippifer are not present in this lineage and which of its chromosome pairs is homologous to the sex chromosomes of P. ephippifer remain to be elucidated as well as the role of such a karyotypic divergence in the evolution of these frogs. Here, we described a new family of repetitive DNA and used its chromosomal sites along with the markers detected by a probe constructed from the microdissected segment of the Z chromosome of P. ephippifer to infer chromosomal homology. We also analyzed an unnamed species that is considered to be the sister group of the clade composed of Lineage 1 of “P. cuvieri” and P. ephippifer. Our results suggest that complex rearrangements involving the chromosomes that were inferred to be homeologous to the sex chromosomes of P. ephippifer have occurred during the divergence of this group of frogs.


2021 ◽  
Vol 22 (9) ◽  
pp. 4514
Author(s):  
Patrycja Juchniewicz ◽  
Ewa Piotrowska ◽  
Anna Kloska ◽  
Magdalena Podlacha ◽  
Jagoda Mantej ◽  
...  

Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Wen-Juan Ma ◽  
Paris Veltsos

Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.


Sign in / Sign up

Export Citation Format

Share Document