scholarly journals A Crucial Role for cAMP and Protein Kinase A in D1 Dopamine Receptor Regulated Intracellular Calcium Transients

Neurosignals ◽  
2008 ◽  
Vol 16 (2-3) ◽  
pp. 112-123 ◽  
Author(s):  
Rujuan Dai ◽  
Mohammad K. Ali ◽  
Nelson Lezcano ◽  
Clare Bergson
Author(s):  
Karine Ramires Lima ◽  
Ana Carolina Souza da Rosa ◽  
Steffanie Severo Picua ◽  
Shara Souza Silva ◽  
Náthaly Marks Soares ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Thomas M. Butler ◽  
Marion J. Siegman

Catch is a mechanical state occurring in some invertebrate smooth muscles characterized by high force maintenance and resistance to stretch during extremely slow relaxation. During catch, intracellular calcium is near basal concentration and myosin crossbridge cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated phosphorylation of sites near the N- and C- temini of the minititin twitchin (~526 kDa). Some catch force maintenance car also occur together with cycling myosin crossbridges at submaximal calcium concentrations, but not when the muscle is maximally activated. Additionally, the link responsible for catch can adjust during shortening of submaximally activated muscles and maintain catch force at the new shorter length. Twitchin binds to both thick and thin filaments, and the thin filament binding shown by both the N- and Cterminal portions of twitchin is decreased by phosphorylation of the sites that regulate catch. The data suggest that the twitchin molecule itself is the catch force beanng tether between thick and thin filaments. We present a model for the regulation of catch in which the twitchin tether can be displaced from thin filaments by both (a) the phosphorylation of twitchin and (b) the attachment of high force myosin crossbridges.


Endocrinology ◽  
2005 ◽  
Vol 146 (5) ◽  
pp. 2295-2305 ◽  
Author(s):  
Yong Xu ◽  
Teresa L. Krukoff

Abstract We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pm to 100 nm) stimulated NO release from the cells, with a maximal response observed with 1 nm at 30 min. This response was blocked by 1 nm ADM22–52, an ADM receptor antagonist or 2 μm vinyl-l-NIO, a neuronal NO synthase inhibitor. In addition, 5 μm 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when l-type calcium channels were inhibited with 5 μm nifedipine or 10 μm nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 μm cyclopiazonic acid or 150 nm thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 μm ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mm dibutyryl cAMP, a cAMP analog, and were abrogated by 5 μm H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nm) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 μm) or H-89 (5 μm) and was reduced by ryanodine (10 μm). These results suggest that ADM stimulates calcium influx through l-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+]i cause activation of neuronal NO synthase and NO release.


2004 ◽  
Vol 279 (19) ◽  
pp. 19502-19511 ◽  
Author(s):  
Jonathan B. Fitzgerald ◽  
Moonsoo Jin ◽  
Delphine Dean ◽  
David J. Wood ◽  
Ming H. Zheng ◽  
...  

Chondrocytes are influenced by mechanical forces to remodel cartilage extracellular matrix. Previous studies have demonstrated the effects of mechanical forces on changes in biosynthesis and mRNA levels of particular extracellular matrix molecules, and have identified certain signaling pathways that may be involved. However, the broad extent and kinetics of mechano-regulation of gene transcription has not been studied in depth. We applied static compressive strains to bovine cartilage explants for periods between 1 and 24 h and measured the response of 28 genes using real time PCR. Compression time courses were also performed in the presence of an intracellular calcium chelator or an inhibitor of cyclic AMP-activated protein kinase A. Cluster analysis of the data revealed four main expression patterns: two groups containing either transiently up-regulated or duration-enhanced expression profiles could each be subdivided into genes that did or did not require intracellular calcium release and cyclic AMP-activated protein kinase A for their mechano-regulation. Transcription levels for aggrecan, type II collagen, and link protein were up-regulated ∼2–3-fold during the first 8 h of 50% compression and subsequently down-regulated to levels below that of free-swelling controls by 24 h. Transcription levels of matrix metalloproteinases-3, -9, and -13, aggrecanase-1, and the matrix protease regulator cyclooxygenase-2 increased with the duration of 50% compression 2–16-fold by 24 h. Thus, transcription of proteins involved in matrix remodeling and catabolism dominated over anabolic matrix proteins as the duration of static compression increased. Immediate early genes c-fosand c-junwere dramatically up-regulated 6–30-fold, respectively, during the first 8 h of 50% compression and remained up-regulated after 24 h.


Sign in / Sign up

Export Citation Format

Share Document