Neurosignals
Latest Publications


TOTAL DOCUMENTS

859
(FIVE YEARS 16)

H-INDEX

62
(FIVE YEARS 3)

Published By S. Karger Ag

1424-8638, 1424-862x

Neurosignals ◽  
2021 ◽  
Vol 29 (S1) ◽  
pp. 1-7

BACKGROUND/AIMS: Intravitreal rituximab is an off-label treatment option for primary vitreoretinal lymphoma (PVRL). The objective of this study was to monitor the therapeutic response and safety profile of intravitreal rituximab in a cohort of PVRL patients. METHODS: In this retrospective, uncontrolled, open label, multicentre study, 20 eyes from 15 consecutive patients diagnosed with PRVL received at least one intravitreal injection of 1mg in 0.1ml rituximab. Biodata of the PVRL patients was recorded as well as visual acuity and vitreous haze score immediately before rituximab intravitreal injection and at follow-up examinations. Intravitreal rituximab safety data was also recorded. Additional rituximab injections were made during control visits on a pro re nata (PRN) regime using increased vitreous haze to indicate recurrence. RESULTS: There was significant vitreous haze reduction (p=0.0002) followed by significant improvement of visual acuity (mean best visual acuity before therapy 0.57 logMAR, after therapy 0.20 logMAR (p=0.0228) during the follow-up time up to 4 years. Only mild ocular side effects were reported. Median follow-up time was 565 days (range, 7-1253 days). CONCLUSION: Intravitreal rituximab therapy shows promising PVRL regression without any severe side effects. Although our clinical data support rituximab as intravitreal therapy in PVRL disease, further study is warranted.


Neurosignals ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 14-23

The antiaging protein Klotho is encoded by the Klotho gene first identified as an 'aging suppressor', in mice. Klotho deficiency is involved in premature aging and early death, while its overexpression is related to longevity. Klotho is mostly expressed in the kidney, but also in the brain, and in other organs. Two forms of Klotho, the cell membrane and secreted form, have pleiotropic activities that include regulation of general metabolism, oxidative stress, and mineral metabolism that correlates with its effect on accelerating aging. Membrane Klotho serves as an obligate co-receptor for the fibroblast growth factor (FGF), while secreted Klotho plays its role as a humoral factor. Klotho protein participates in the regulation of several biological activities, including regulation of calcium-phosphate homeostasis and PTH as well as vitamin D metabolism. The active form of vitamin D, 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), acts as a neurosteroid that participates in the regulation of multiple brain functions. It provides neuroprotection and suppresses oxidative stress, inhibits inflammation and inflammatory mediators, and stimulates various neurotrophins. Calcitriol is involved in many brain-related diseases, including multiple sclerosis, Alzheimer´s disease, Parkinson´s disease, and schizophrenia. This review covers the most recent advances in Klotho research and discusses Klotho-dependent roles of calcitriol in neuro-psycho-pathophysiology.


Neurosignals ◽  
2021 ◽  
Vol 29 (1) ◽  
pp. 1-13

Neuroendocrine dysregulation has been associated with rheumatoid arthritis (RA). Tyrosine hydroxylase (TH), a rate-limiting enzyme for synthesis of neuroendocrine hormones such as epinephrine, is also expressed in T lymphocytes and regulates balance between helper T (Th) 17 cells and regulatory T (Treg) cells. Herein, we aimed to show that TH expression in joints alleviates joint inflammation and Th17/Treg imbalance in collagen-induced arthritis (CIA), an animal model of RA, and these effects may be implemented by the mechanism of epinephrine action on α1-adrenoreceptor (α1-AR) in T cells. METHODS: CIA was prepared by intradermal injection of collagen type II in tail base of DBA1/J mice. On the 33rd day post-immunization, lentiviral vectors encoding TH or TH shRNA were injected into ankle joints of CIA mice. Limb inflammation of the mice was assessed beginning from day 21 until day 69 post-immunization by measurement of limb swelling, erythema and rigidity. Th17 and Treg differentiation and function in ankle joints were assessed on day 69 post-immunization by test of the expression of Th17 transcriptional factor ROR-γt and the levels of proinflammatory cytokines interleukin (IL)-17 and IL-22 as well as the expression of Treg transcriptional factor Foxp3 and the levels of antiinflammatory cytokines transforming growth factor (TGF)-β1 and IL-10. T cells were obtained from the spleen of mice that had been immunized with collagen type II 41 day earlier and treated with epinephrine or α1-AR agonist phenylephrine in vitro. Flow cytometry was used to analyze the percentages of CD25-IL-17+ cells and CD25+Foxp3+ cells in CD4+ T cells. RESULTS: TH gene overexpression in ankle joints of CIA mice reduced limb inflammation and Th17-related transcription factor expression and inflammatory cytokine production but increased Treg-related antiinflammatory cytokine production in the joints. In contrast, TH gene silence in ankle joints of CIA mice enhanced limb inflammation and Th17 cell activity but decreased Treg cell function in the joints. Epinephrine upregulated α1-AR expression in T cells derived from CIA mice. Both epinephrine and phenylephrine reduced CIA-induced Th17 transcription factor expression and inflammatory cytokine production but enhanced Treg antiinflammatory cytokine production in vitro. CONCLUSION: Upregulating TH expression in joints alleviates joint inflammation and Th17/Treg imbalance in CIA at least partially by enhancing epinephrine action on α1-AR in T cells.


Neurosignals ◽  
2020 ◽  
Vol 28 (1) ◽  
pp. 14-24

The consumption of dairy products, particularly of low fat milk, has been shown to be associated with the occurrence of Parkinson’s disease. This association does not necessarily reflect a pathophysiological role of milk intake in the development of Parkinson’s disease. Nevertheless, the present review discusses a potential mechanism possibly mediating an effect of milk consumption on Parkinson’s disease. The case is made that milk is tailored in part to support bone mineralization of the suckling offspring and is thus rich in calcium and phosphate. Milk intake is thus expected to enhance intestinal calcium phosphate uptake. As binding to fatty acids impedes Ca2+ absorption, low fat milk is particularly effective. Calcium and phosphate uptake inhibit the formation of 1,25(OH)2D3 (1,25-dihydroxy-vitamin D3 = calcitriol), the active form of vitamin D. Calcium inhibits 1,25(OH)2D3 production in part by suppressing the release of parathyroid hormone, a powerful stimulator of 1,25(OH)2D3 formation. Phosphate excess stimulates the release of fibroblast growth factor FGF23, which suppresses 1,25(OH)2D3 formation, an effect requiring Klotho. 1,25(OH)2D3 is a main regulator of mineral metabolism, but has powerful effects apparently unrelated to mineral metabolism, including suppression of inflammation and influence of multiple brain functions. In mice, lack of 1,25(OH)2D3 and excessive 1,25(OH)2D3 formation have profound effects on several types of behavior, such as explorative behavior, anxiety, grooming and social behavior. 1,25(OH)2D3 is produced in human brain and influences the function of various structures including substantia nigra. In neurons 1,25(OH)2D3 suppresses oxidative stress, inhibits inflammation and stimulates neurotrophin formation thus providing neuroprotection. As a result, 1,25(OH)2D3 is considered to favorably influence the clinical course of Parkinson’s disease. In conclusion, consumption of milk could in theory accelerate the downhill course of neuronal function in Parkinson’s disease. However, substantial additional experimentation is required to define the putative causal role of 1,25(OH)2D3 in the pathophysiology of Parkinson’s disease and its sensitivity to milk consumption.


Neurosignals ◽  
2019 ◽  
Vol 27 (S1) ◽  
pp. 44-53 ◽  

Neurosignals ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 50-61 ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document