Corpus Callosum and Inferior Forebrain White Matter Microstructure Are Related to Functional Outcome from Raised Intracranial Pressure in Child Traumatic Brain Injury

Author(s):  
Robert C. Tasker ◽  
Amber Gunn Westland ◽  
Deborah K. White ◽  
Guy B. Williams
2019 ◽  
Vol 36 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Kara M. Wendel ◽  
Jeong Bin Lee ◽  
Bethann M. Affeldt ◽  
Mary Hamer ◽  
Indira S. Harahap-Carrillo ◽  
...  

2008 ◽  
Vol 25 (4) ◽  
pp. E5 ◽  
Author(s):  
Shirley I. Stiver ◽  
Geoffrey T. Manley

The aim of this study was to review the current protocols of prehospital practice and their impact on outcome in the management of traumatic brain injury. A literature review of the National Library of Medicine encompassing the years 1980 to May 2008 was performed. The primary impact of a head injury sets in motion a cascade of secondary events that can worsen neurological injury and outcome. The goals of care during prehospital triage, stabilization, and transport are to recognize life-threatening raised intracranial pressure and to circumvent cerebral herniation. In that process, prevention of secondary injury and secondary insults is a major determinant of both short- and longterm outcome. Management of brain oxygenation, blood pressure, cerebral perfusion pressure, and raised intracranial pressure in the prehospital setting are discussed. Patient outcomes are dependent upon an organized trauma response system. Dispatch and transport timing, field stabilization, modes of transport, and destination levels of care are addressed. In addition, special considerations for mass casualty and disaster planning are outlined and recommendations are made regarding early response efforts and the ethical impact of aggressive prehospital resuscitation. The most sophisticated of emergency, operative, or intensive care units cannot reverse damage that has been set in motion by suboptimal protocols of triage and resuscitation, either at the injury scene or en route to the hospital. The quality of prehospital care is a major determinant of long-term outcome for patients with traumatic brain injury.


Author(s):  
Martin Beed ◽  
Richard Sherman ◽  
Ravi Mahajan

Decreased consciousnessSeizures and status epilepticusStroke/thromboembolic strokeIntracerebral haemorrhageSubarachnoid haemorrhageTraumatic brain injuryRaised intracranial pressureMeningitis and encephalitisAgitation/confusion/aggressionAlcohol withdrawalNeuromuscular weakness and paralysisGuillain–Barré syndromeMyasthenia gravis↓consciousness occurs in many diseases requiring admission to intensive care, and is often a cause for admission in its own right. Changes in neurological state may be related to intracranial pathology, or may occur in response to respiratory, circulatory, or metabolic disorders....


Author(s):  
Scott F. Sorg ◽  
Victoria C. Merritt ◽  
Alexandra L. Clark ◽  
Madeleine L. Werhane ◽  
Kelsey A. Holiday ◽  
...  

Abstract Objective: We examined whether intraindividual variability (IIV) across tests of executive functions (EF-IIV) is elevated in Veterans with a history of mild traumatic brain injury (mTBI) relative to military controls (MCs) without a history of mTBI. We also explored relationships among EF-IIV, white matter microstructure, and posttraumatic stress disorder (PTSD) symptoms. Method: A total of 77 Veterans (mTBI = 43, MCs = 34) completed neuropsychological testing, diffusion tensor imaging (DTI), and PTSD symptom ratings. EF-IIV was calculated as the standard deviation across six tests of EF, along with an EF-Mean composite. DSI Studio connectometry analysis identified white matter tracts significantly associated with EF-IIV according to generalized fractional anisotropy (GFA). Results: After adjusting for EF-Mean and PTSD symptoms, the mTBI group showed significantly higher EF-IIV than MCs. Groups did not differ on EF-Mean after adjusting for PTSD symptoms. Across groups, PTSD symptoms significantly negatively correlated with EF-Mean, but not with EF-IIV. EF-IIV significantly negatively correlated with GFA in multiple white matter pathways connecting frontal and more posterior regions. Conclusions: Veterans with mTBI demonstrated significantly greater IIV across EF tests compared to MCs, even after adjusting for mean group differences on those measures as well as PTSD severity. Findings suggest that, in contrast to analyses that explore effects of mean performance across tests, discrepancy analyses may capture unique variance in neuropsychological performance and more sensitively capture cognitive disruption in Veterans with mTBI histories. Importantly, findings show that EF-IIV is negatively associated with the microstructure of white matter pathways interconnecting cortical regions that mediate executive function and attentional processes.


2010 ◽  
Vol 113 (3) ◽  
pp. 564-570 ◽  
Author(s):  
Roukoz Chamoun ◽  
Dima Suki ◽  
Shankar P. Gopinath ◽  
J. Clay Goodman ◽  
Claudia Robertson

Object Authors of several studies have implied a key role of glutamate, an excitatory amino acid, in the pathophysiology of traumatic brain injury (TBI). However, the place of glutamate measurement in clinical practice and its impact on the management of TBI has yet to be elucidated. The authors' objective in the present study was to evaluate glutamate levels in TBI, analyzing the factors affecting them and determining their prognostic value. Methods A prospective study of patients with severe TBI was conducted with an inclusion criterion of a Glasgow Coma Scale score ≤ 8 within 48 hours of injury. Invasive monitoring included intracranial pressure measurements, brain tissue PO2, jugular venous O2 saturation, and cerebral microdialysis. Patients received standard care including mass evacuation when indicated and treatment of elevated intracranial pressure values. Demographic data, CT findings, and outcome at 6 months of follow-up were recorded. Results One hundred sixty-five patients were included in the study. Initially high glutamate values were predictive of a poor outcome. The mortality rate was 30.3% among patients with glutamate levels > 20 μmol/L, compared with 18% among those with levels ≤ 20 μmol/L. Two general patterns were recognized: Pattern 1, glutamate levels tended to normalize over the monitoring period (120 hours); and Pattern 2, glutamate levels tended to increase with time or remain abnormally elevated. Patients showing Pattern 1 had a lower mortality rate (17.1 vs 39.6%) and a better 6-month functional outcome among survivors (41.2 vs 20.7%). Conclusions Glutamate levels measured by microdialysis appear to have an important role in TBI. Data in this study suggest that glutamate levels are correlated with the mortality rate and 6-month functional outcome.


2017 ◽  
Vol 34 (4) ◽  
pp. 807-815 ◽  
Author(s):  
Gershon Spitz ◽  
Yvette Alway ◽  
Kate Rachel Gould ◽  
Jennie L. Ponsford

Sign in / Sign up

Export Citation Format

Share Document