scholarly journals Isolation and Characterization of Murine Mandibular Condylar Cartilage Cell Populations

2012 ◽  
Vol 195 (3) ◽  
pp. 232-243 ◽  
Author(s):  
J. Chen ◽  
A. Utreja ◽  
Z. Kalajzic ◽  
T. Sobue ◽  
D. Rowe ◽  
...  
Author(s):  
Catherine K. Hagandora ◽  
Alejandro J. Almarza

The temporomandibular joint (TMJ) is a synovial, bilateral joint formed by the articulation of the condyle of the mandible and the articular eminence and glenoid fossa of the temporal bone. The articulating tissues of the joint include the TMJ disc and the mandibular condylar cartilage (MCC). It is estimated that 10 million Americans are affected by TMJ disorders (TMDs), a term encompassing a variety of conditions which result in positional or structural abnormalities in the joint. [1] Characterization of the properties of the articulating tissues of the joint is a necessary prequel to understanding the process of pathogenesis as well as tissue engineering suitable constructs for replacement of damaged joint fibrocartilage. Furthermore, the current literature lacks a one-to-one comparison of the regional compressive behavior of the goat MCC to the TMJ disc.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Aisha M. Basudan ◽  
Yanqi Yang

Mandibular condylar cartilage (MCC) is a multizonal heterogeneous fibrocartilage consisting of fibrous (FZ), proliferative (PZ), mature (MZ), and hypertrophic (HZ) zones. Gross sampling of the whole tissue may conceal some important information and compromise the validity of the molecular analysis. Laser capture microdissection (LCM) technology allows isolating zonal (homogenous) cell populations and consequently generating more accurate molecular and genetic data, but the challenges during tissue preparation and microdissection procedures are to obtain acceptable tissue section morphology that allows histological identification of the desirable cell type and to minimize RNA degradation. Therefore, our aim is to optimize an LCM protocol for isolating four homogenous zone-specific cell populations from their respective MCC zones while preserving the quality of RNA recovered. MCC and FCC (femoral condylar cartilage) specimens were harvested from 5-week-old Sprague–Dawley male rats. Formalin-fixed and frozen unfixed tissue sections were prepared and compared histologically. Additional specimens were microdissected to prepare LCM samples from FCC and each MCC zone individually. Then, to evaluate LCM-RNA integrity, 3′/m ratios of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (β-Actin) using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were calculated. Both fixed and unfixed tissue sections allowed reliable identification of MCC zones. The improved morphology of the frozen sections of our protocol has extended the range of cell types to be isolated. Under the empirically set LCM parameters, four homogeneous cell populations were efficiently isolated from their respective zones. The 3′/m ratio means of GAPDH and β-Actin ranged between 1.11–1.56 and 1.41–2.12, respectively. These values are in line with the reported quality control requirements. The present study shows that the optimized LCM protocol could allow isolation of four homogenous zone-specific cell populations from MCC, meanwhile preserving RNA integrity to meet the high quality requirements for subsequent molecular analyses. Thereby, accurate molecular and genetic data could be generated.


2008 ◽  
Vol 31 (3) ◽  
pp. 246-253 ◽  
Author(s):  
Virginie Pichard ◽  
Pierre Joseph Royer ◽  
Carine Richou ◽  
Estelle Cauchin ◽  
Karen Goebes ◽  
...  

2000 ◽  
Vol 31 (2) ◽  
pp. 149-149 ◽  
Author(s):  
T Tozaki ◽  
H Kakoi ◽  
S Mashima ◽  
K Hirota ◽  
T Hasegawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document