What Do Membrane Potentials Have to Do with Immunology?

2015 ◽  
pp. 252-255
Author(s):  
Hansruedi Kiefer
Keyword(s):  
1987 ◽  
Vol 6 (1) ◽  
pp. 49-69 ◽  
Author(s):  
Gunter Fuhr ◽  
Rolf Hagedorn ◽  
Roland Glaser ◽  
Jan Gimsa ◽  
Torsten Muller

1988 ◽  
Vol 59 (1) ◽  
pp. 77-89 ◽  
Author(s):  
E. Puil ◽  
B. Gimbarzevsky ◽  
I. Spigelman

1. The complex impedances and impedance magnitude functions were obtained from neurons in in vitro slices of trigeminal root ganglia using frequency-domain analyses of intracellularly recorded voltage responses to specified oscillatory input currents. A neuronal model derived from linearized Hodgkin-Huxley-like equations was used to fit the complex impedance data. This procedure yielded estimates for membrane electrical properties. 2. Membrane resonance was observed in the impedance magnitude functions of all investigated neurons at their initial resting membrane potentials and was similar to that reported previously for trigeminal root ganglion neurons in vivo. Tetrodotoxin (10(-6) M), a Na+-channel blocker, applied in the bathing medium for 20 min produced only minor changes, if any, in the resonance, although gross impairment of Na+-spike electrogenesis was apparent in most of the neurons. Brief applications (1-5 min) of a K+-channel blocker, tetraethylammonium (TEA; 10(-2) M), increased the impedance magnitude and abolished, in a reversible manner, the resonant behavior. In all cases, the resonant frequency was decreased by TEA administration prior to total blockade of resonance. 3. The TEA-induced blockade of resonance was associated with decreases in the estimates of the membrane conductances, without significant alterations of input capacitance. A particularly large decrease was observed in Gr, the time-invariant resting conductance that includes a lumped leak conductance component. The voltage- and time-dependent conductance, GL, and associated relaxation time constant, tau u, also declined progressively during administration of TEA. 4. Systematic variations in the membrane potentials of trigeminal root ganglion neurons were produced by intracellular injections of long-lasting step currents with superposition of the oscillatory current stimuli, in order to assess the effects of TEA on the relationship of the electrical properties to the membrane potential. Applications of TEA led to a depolarizing shift in the dependence of the membrane property estimates, suggesting voltage-dependence of the effects of TEA on presumed K+ channels in the membrane. 5. These data suggest a primary involvement of K+ conductance in the genesis of membrane resonance. This electrical behavior or its ionic mechanism is a major modulator of the subthreshold electrical responsiveness of trigeminal root ganglion neurons.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3420
Author(s):  
Marc Jofre ◽  
Lluís Jofre ◽  
Luis Jofre-Roca

The investigation of the electromagnetic properties of biological particles in microfluidic platforms may enable microwave wireless monitoring and interaction with the functional activity of microorganisms. Of high relevance are the action and membrane potentials as they are some of the most important parameters of living cells. In particular, the complex mechanisms of a cell’s action potential are comparable to the dynamics of bacterial membranes, and consequently focusing on the latter provides a simplified framework for advancing the current techniques and knowledge of general bacterial dynamics. In this work, we provide a theoretical analysis and experimental results on the microwave detection of microorganisms within a microfluidic-based platform for sensing the membrane potential of bacteria. The results further advance the state of microwave bacteria sensing and microfluidic control and their implications for measuring and interacting with cells and their membrane potentials, which is of great importance for developing new biotechnologically engineered systems and solutions.


1992 ◽  
Vol 63 (5) ◽  
pp. 1336-1345 ◽  
Author(s):  
P.R. Harrigan ◽  
M.J. Hope ◽  
T.E. Redelmeier ◽  
P.R. Cullis

1992 ◽  
Vol 263 (4) ◽  
pp. H1161-H1169 ◽  
Author(s):  
H. B. Nuss ◽  
S. R. Houser

The hypothesis that Ca entry by the sarcolemmal Na-Ca exchange mechanism induces sarcoplasmic reticulum (SR) Ca release, loads the SR with Ca, and/or directly induces contractions by elevating cytosolic free Ca was tested in voltage-clamped feline ventricular myocytes. Intracellular Na concentration was increased by cellular dialysis to enhance Ca influx via "reverse-mode" Na-Ca exchange at positive membrane potentials, at which the "L-type" Ca current (ICa) should be small. Contractions were induced in the presence of Ca channel antagonists by depolarization to these potentials, suggesting that Ca influx via reverse-mode Na-Ca exchange was involved. These contractions had both phasic (SR related) and tonic components of shortening. They were smaller and began with more delay after depolarization than contractions which involved ICa. The magnitude of shortening was graded by the amount and duration of depolarization, suggesting that Ca influx via reverse-mode Na-Ca exchange has the capacity to induce and grade SR Ca release. Small slow contractions could be evoked in the presence of ryanodine (to impair SR function) and verapamil (to block ICa), supporting the idea that Ca influx via Na-Ca exchange is sufficient to directly activate the contractile proteins. Contractions induced by voltage steps to +10 mV, which were usually small when ICa was blocked, were potentiated if preceded by a voltage step to strongly positive potentials. This potentiation was inhibited by ryanodine, suggesting that Ca entry that occurs by Na-Ca exchange may be important for normal SR Ca loading.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 103 (47) ◽  
pp. 17961-17966 ◽  
Author(s):  
R. Araya ◽  
J. Jiang ◽  
K. B. Eisenthal ◽  
R. Yuste
Keyword(s):  

1985 ◽  
Vol 38 (2) ◽  
pp. 180-186 ◽  
Author(s):  
Shin-Ichi Nakayama ◽  
George C. Kramer ◽  
Richard C. Carlsen ◽  
James W. Holcroft

2006 ◽  
Vol 128 (6) ◽  
pp. 745-753 ◽  
Author(s):  
Kevin Dougherty ◽  
Manuel Covarrubias

Dipeptidyl aminopeptidase–like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U. Lin, M.J. Saganich, T. McCormack, K.O. Akinsanya, S.Y. Qi, and B. Rudy. 2005. J. Biol. Chem. 280:18853–18861). However, the underlying mechanism of action is unknown. We hypothesized that a unique interaction between the Kv4.2 channel and a DPLP found in brain (DPPX-S) may remodel the channel's voltage-sensing domain. To test this hypothesis, we implemented a robust experimental system to measure Kv4.2 gating currents and study gating charge dynamics in the absence and presence of DPPX-S. The results demonstrated that coexpression of Kv4.2 and DPPX-S causes a −26 mV parallel shift in the gating charge-voltage (Q-V) relationship. This shift is associated with faster outward movements of the gating charge over a broad range of relevant membrane potentials and accelerated gating charge return upon repolarization. In sharp contrast, DPPX-S had no effect on gating charge movements of the Shaker B Kv channel. We propose that DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement. The remodeling of gating charge dynamics may involve specific protein–protein interactions of the DPPX-S's transmembrane segment with the voltage-sensing and pore domains of the Kv4.2 channel. This mechanism may determine the characteristic fast operation of neuronal Kv4 channels in the subthreshold range of membrane potentials.


Sign in / Sign up

Export Citation Format

Share Document