bacterial membranes
Recently Published Documents


TOTAL DOCUMENTS

601
(FIVE YEARS 173)

H-INDEX

57
(FIVE YEARS 7)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 343
Author(s):  
Agata Ładniak ◽  
Małgorzata Jurak ◽  
Marta Palusińska-Szysz ◽  
Agnieszka Ewa Wiącek

The aim of the study was to determine the bactericidal properties of popular medical, pharmaceutical, and cosmetic ingredients, namely chitosan (Ch), hyaluronic acid (HA), and titanium dioxide (TiO2). The characteristics presented in this paper are based on the Langmuir monolayer studies of the model biological membranes formed on subphases with these compounds or their mixtures. To prepare the Langmuir film, 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) phospholipid, which is the component of most bacterial membranes, as well as biological material-lipids isolated from bacteria Escherichia coli and Staphylococcus aureus were used. The analysis of the surface pressure-mean molecular area (π-A) isotherms, compression modulus as a function of surface pressure, CS−1 = f(π), relative surface pressure as a function of time, π/π0 = f(t), hysteresis loops, as well as structure visualized using a Brewster angle microscope (BAM) shows clearly that Ch, HA, and TiO2 have antibacterial properties. Ch and TiO2 mostly affect S. aureus monolayer structure during compression. They can enhance the permeability of biological membranes leading to the bacteria cell death. In turn, HA has a greater impact on the thickness of E. coli film.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010144
Author(s):  
Sweta Roy ◽  
Ali Adem Bahar ◽  
Huan Gu ◽  
Shikha Nangia ◽  
Karin Sauer ◽  
...  

Persistent bacterial infections do not respond to current antibiotic treatment and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux.


2021 ◽  
Vol 12 ◽  
Author(s):  
George W. Liechti

Cell size regulation in bacteria is a function of two basic cellular processes: the expansion of the cell envelope and its constriction at spatially defined points at what will eventually become the division plane. In most bacterial species, both cell wall expansion and restriction are dependent on peptidoglycan (PG), a structural polymer comprised of sugars and amino acids that imparts strength and rigidity to bacterial membranes. Pathogenic Chlamydia species are unique in that their cell walls contain very little PG, which is restricted almost entirely to the apparent division plane of the microbe’s replicative forms. Very little is known about the degree to which PG affects the size and shape of C. trachomatis during its division process, and recent studies suggest the process is initiated via a polarized mechanism. We conducted an imaging study to ascertain the dimensions, orientation, and relative density of chlamydial PG throughout the organism’s developmental cycle. Our analysis indicates that PG in replicating C. trachomatis can be associated with four, broad structural forms; polar/septal disks, small/thick rings, large rings, and small/thin rings. We found that PG density appeared to be highest in septal disks and small/thick rings, indicating that these structures likely have high PG synthesis to degradation ratios. We also discovered that as C. trachomatis progresses through its developmental cycle PG structures, on average, decrease in total volume, indicating that the average cell volume of chlamydial RBs likely decreases over time. When cells infected with C. trachomatis are treated with inhibitors of critical components of the microbe’s two distinct PG synthases, we observed drastic differences in the ratio of PG synthesis to degradation, as well as the volume and shape of PG-containing structures. Overall, our results suggest that C. trachomatis PG synthases differentially regulate the expansion and contraction of the PG ring during both the expansion and constriction of the microbe’s cell membrane during cell growth and division, respectively.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shao-Chieh Yen ◽  
Ju-Yi Mao ◽  
Hung-Yun Lin ◽  
Huai-Ting Huang ◽  
Scott G. Harroun ◽  
...  

Abstract Background Shrimp aquaculture has suffered huge economic losses over the past decade due to the outbreak of acute hepatopancreatic necrosis disease (AHPND), which is mainly caused by the bacteria Vibrio parahaemolyticus (V. parahaemolyticus) with the virulence pVA1 plasmid, which encodes a secretory photorhabdus insect-related (Pir) toxin composed of PirA and PirB proteins. The Pir toxin mainly attacks the hepatopancreas, a major metabolic organ in shrimp, thereby causing necrosis and loss of function. The pandemic of antibiotic-resistant strains makes the impact worse. Methods Mild pyrolysis of a mixture of polysaccharide dextran 70 and the crosslinker 1,8-diaminooctane at 180 ℃ for 3 h to form carbonized nanogels (DAO/DEX-CNGs) through controlled cross-linking and carbonization. The multifunctional therapeutic CNGs inherit nanogel-like structures and functional groups from their precursor molecules. Results DAO/DEX-CNGs manifest broad-spectrum antibacterial activity against Vibrio parahaemolyticus responsible for AHPND and even multiple drug-resistant strains. The polymer-like structures and functional groups on graphitic-carbon within the CNGs exhibit multiple treatment effects, including disruption of bacterial membranes, elevating bacterial oxidative stress, and neutralization of PirAB toxins. The inhibition of Vibrio in the midgut of infected shrimp, protection of hepatopancreas tissue from Pir toxin, and suppressing overstimulation of the immune system in severe V. parahaemolyticus infection, revealing that CNGs can effectively guard shrimp from Vibrio invasion. Moreover, shrimps fed with DAO/DEX-CNGs were carefully examined, such as the expression of the immune-related genes, hepatopancreas biopsy, and intestinal microbiota. Few adverse effects on shrimps were observed. Conclusion Our work proposes brand-new applications of multifunctional carbon-based nanomaterials as efficient anti-Vibrio agents in the aquatic industry that hold great potential as feed additives to reduce antibiotic overuse in aquaculture. Graphical Abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anju Pandey ◽  
Asmita Devkota ◽  
Anil Sigdel ◽  
Zeinab Yadegari ◽  
Korsi Dumenyo ◽  
...  

AbstractSuccessful delivery of plasmid DNA into the microbial cells is fundamental in recombinant DNA technology. Natural bacterial transformation is limited to only certain species due in part to the repulsive forces between negatively charged DNA and bacterial membranes. Most common method of DNA delivery into bacteria is artificial transformation through heat shock and electroporation. These methods require sophisticated instruments and tedious steps in preparation of competent cells. Transformation by conjugation is also not applicable to all plasmids. Nanoparticles have been used successfully in therapeutics for drug delivery into animal cells. They are starting to gain popularity in plant sciences as novel DNA nano carriers. Despite their promise as tool for DNA delivery, their use in microbial cell transformation has not been reported yet. Here we report the synthesis of carbon dots (CDs) from citric acid and β-alanine and their use in DNA delivery into E. coli cells. CDs were fabricated using microwave assisted synthesis. Plasmids carrying RFP reporter and ampicillin resistance genes were transferred to bacterial cells and further confirmed using polymerase chain reaction. Our findings indicate that CDs can be used successfully for delivery of foreign DNA of up to 10 kb into E. coli. We have demonstrated the use of β-alanine/citric acid carbon dots as nanocarriers of DNA into E. coli cells and identified their limitation in terms of the size of plasmid DNA they could carry. Use of these carbon dots is a novel method in foreign DNA delivery into bacterial cells and have a potential for the transformation of resistant organism for which there is still no reliable DNA delivery systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaxin Ding ◽  
Binbin Gao ◽  
Zhenhua Chen ◽  
Xifan Mei

Bacterial infection and its severe oxidative stress reaction will cause damage to skin cell mitochondria, resulting in long-lasting wound healing and great pain to patients. Thus, delayed wound healing in diabetic patients with Staphylococcus aureus infection is a principal challenge worldwide. Therefore, novel biomaterials with multifunction of bacterial membrane destruction and skin cell mitochondrial protection are urgently needed to be developed to address this challenge. In this work, novel gold cage (AuNCs) modified with epigallocatechin gallate (EGCG) were prepared to treat delayed diabetic wounds. The results showed that Au-EGCG had a high and stable photothermal conversion efficiency under near-infrared irradiation, and the scavenging rate of Au-EGCG for S. aureus could reach 95%. The production of large amounts of reactive oxygen species (ROS) leads to the disruption of bacterial membranes, inducing bacterial lysis and apoptosis. Meanwhile, Au-EGCG fused into hydrogel (Au-EGCG@H) promoted the migration and proliferation of human umbilical cord endothelial cells, reduced cellular mitochondrial damage and oxidative stress in the presence of infection, and significantly increased the basic fibroblast growth factor expression and vascular endothelial growth factor. In addition, animal studies showed that wound closure was 97.2% after 12 days of treatment, and the healing of chronic diabetic wounds was significantly accelerated. Au-EGCG nanoplatforms were successfully prepared to promote cell migration and angiogenesis in diabetic rats while removing S. aureus, reducing oxidative stress in cells, and restoring impaired mitochondrial function. Au-EGCG provides an effective, biocompatible, and multifunctional therapeutic strategy for chronic diabetic wounds.


2021 ◽  
Vol 14 (12) ◽  
pp. 1245
Author(s):  
Yingxia Zhang ◽  
Jayaram Lakshmaiah Narayana ◽  
Qianhui Wu ◽  
Xiangli Dang ◽  
Guangshun Wang

The deployment of the innate immune system in humans is essential to protect us from infection. Human cathelicidin LL-37 is a linear host defense peptide with both antimicrobial and immune modulatory properties. Despite years of studies of numerous peptides, SK-24, corresponding to the long hydrophobic domain (residues 9–32) in the anionic lipid-bound NMR structure of LL-37, has not been investigated. This study reports the structure and activity of SK-24. Interestingly, SK-24 is entirely helical (~100%) in phosphate buffer (PBS), more than LL-37 (84%), GI-20 (75%), and GF-17 (33%), while RI-10 and 17BIPHE2 are essentially randomly coiled (helix%: 7%–10%). These results imply an important role for the additional N-terminal amino acids (likely E16) of SK-24 in stabilizing the helical conformation in PBS. It is proposed herein that SK-24 contains the minimal sequence for effective oligomerization of LL-37. Superior to LL-37 and RI-10, SK-24 shows an antimicrobial activity spectrum comparable to the major antimicrobial peptides GF-17 and GI-20 by targeting bacterial membranes and forming a helical conformation. Like the engineered peptide 17BIPHE2, SK-24 has a stronger antibiofilm activity than LL-37, GI-20, and GF-17. Nevertheless, SK-24 is least hemolytic at 200 µM compared with LL-37 and its other peptides investigated herein. Combined, these results enabled us to appreciate the elegance of the long amphipathic helix SK-24 nature deploys within LL-37 for human antimicrobial defense. SK-24 may be a useful template of therapeutic potential.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Suhanya V Prasad ◽  
Ewelina Piktel ◽  
Joanna Depciuch ◽  
Alexey Maximenko ◽  
Łukasz Suprewicz ◽  
...  

Aim: To evaluate the antibacterial and antibiofilm activity of ceragenin-conjugated nonspherical gold nanoparticles against the most common agents of otitis media. Methods: Minimal inhibitory and bactericidal concentrations and colony-counting assays, as well as colorimetric and fluorimetric methods, were used to estimate the antibacterial activity of compounds in phosphate-buffered saline and human cerumen. The nanosystems’ biocompatibility and ability to decrease IL-8 release was tested using keratinocyte cells. Results: The tested compounds demonstrated strong antimicrobial activity against planktonic and biofilm cultures at nontoxic doses due to the induction of oxidative stress followed by the damage of bacterial membranes. Conclusions: This study indicates that ceragenin-conjugated nonspherical gold nanoparticles have potential as new treatment methods for eradicating biofilm-forming pathogens associated with otitis media.


2021 ◽  
Vol 12 (5) ◽  
pp. 6804-6814

Antimicrobial peptides (AMPs), ascribed to their decreased microbial drug resistance, can be employed as potent small-molecule drugs to treat various diseases. AMPs have been conserved in a wide variety of living organisms as a result of the evolution of the innate immune system. Notably, Ocellatin AMPs derived from South American Leptodactylus genus frogs have a higher therapeutic efficacy against infections. Inhibitory activity of Ocellatin AMPs against bacterial membranes is determined by the dynamic interplay of peptide cationic, hydrophobicity, helicity, and amphipathicity. Another advantage of using AMPs as drug candidates is their cell selectivity that is non-hemolytic to human cells. Ocellatin AMPs with optimal hydrophobic residues would therefore be a recommended therapeutic candidate. Henceforth, such AMPs could be used as an alternative strategy in curbing antimicrobial resistance. It is noteworthy that the therapeutic efficacy of Ocellatins is to be appreciated for its broad application as it has been proved to be active against several humans, animal, and plant bacterial pathogens.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qun Wang ◽  
Bo Peng ◽  
Mingyue Song ◽  
Abdullah ◽  
Jun Li ◽  
...  

Previous studies from our lab have shown that the antimicrobial peptide F1 obtained from the milk fermentation by Lactobacillus paracasei FX-6 derived from Tibetan kefir was different from common antimicrobial peptides; specifically, F1 simultaneously inhibited the growth of Gram-negative and Gram-positive bacteria. Here, we present follow-on work demonstrating that after the antimicrobial peptide F1 acts on either Escherichia coli ATCC 25922 (E. coli) or Staphylococcus aureus ATCC 63589 (S. aureus), their respective bacterial membranes were severely deformed. This deformation allowed leakage of potassium and magnesium ions from the bacterial membrane. The interaction between the antimicrobial peptide F1 and the bacterial membrane was further explored by artificially simulating the bacterial phospholipid membranes and then extracting them. The study results indicated that after the antimicrobial peptide F1 interacted with the bacterial membranes caused significant calcein leakage that had been simulated by different liposomes. Furthermore, transmission electron microscopy observations revealed that the phospholipid membrane structure was destroyed and the liposomes presented aggregation and precipitation. Quartz Crystal Microbalance with Dissipation (QCM-D) results showed that the antimicrobial peptide F1 significantly reduced the quality of liposome membrane and increased their viscoelasticity. Based on the study's findings, the phospholipid membrane particle size was significantly increased, indicating that the antimicrobial peptide F1 had a direct effect on the phospholipid membrane. Conclusively, the antimicrobial peptide F1 destroyed the membrane structure of both Gram-negative and Gram-positive bacteria by destroying the shared components of their respective phospholipid membranes which resulted in leakage of cell contents and subsequently cell death.


Sign in / Sign up

Export Citation Format

Share Document