Antimicrobial Peptides, Infections and the Skin Barrier

Author(s):  
Maja-Lisa Clausen ◽  
Tove Agner
2020 ◽  
Vol 21 (20) ◽  
pp. 7607
Author(s):  
Hai Le Thanh Nguyen ◽  
Juan Valentin Trujillo-Paez ◽  
Yoshie Umehara ◽  
Hainan Yue ◽  
Ge Peng ◽  
...  

Atopic dermatitis (AD) is a common chronic inflammatory skin disease that exhibits a complex interplay of skin barrier disruption and immune dysregulation. Patients with AD are susceptible to cutaneous infections that may progress to complications, including staphylococcal septicemia. Although most studies have focused on filaggrin mutations, the physical barrier and antimicrobial barrier also play critical roles in the pathogenesis of AD. Within the physical barrier, the stratum corneum and tight junctions play the most important roles. The tight junction barrier is involved in the pathogenesis of AD, as structural and functional defects in tight junctions not only disrupt the physical barrier but also contribute to immunological impairments. Furthermore, antimicrobial peptides, such as LL-37, human β-defensins, and S100A7, improve tight junction barrier function. Recent studies elucidating the pathogenesis of AD have led to the development of barrier repair therapy for skin barrier defects in patients with this disease. This review analyzes the association between skin barrier disruption in patients with AD and antimicrobial peptides to determine the effect of these peptides on skin barrier repair and to consider employing antimicrobial peptides in barrier repair strategies as an additional approach for AD management.


Author(s):  
Hai Le Thanh Nguyen ◽  
Juan Valentin Trujillo-Paez ◽  
Yoshie Umehara ◽  
Hainan Yue ◽  
Ge Peng ◽  
...  

Dermatitis ◽  
2008 ◽  
Vol 19 (4) ◽  
pp. 218-238
Author(s):  
J. M. Jensen ◽  
M. Witt ◽  
S. Pfeiffer ◽  
R. Gläser ◽  
R. Fölster-Holst ◽  
...  

Author(s):  
R. R. Warner

Keratinocytes undergo maturation during their transit through the viable layers of skin, and then abruptly transform into flattened, anuclear corneocytes that constitute the cellular component of the skin barrier, the stratum corneum (SC). The SC is generally considered to be homogeneous in its structure and barrier properties, and is often shown schematically as a featureless brick wall, the “bricks” being the corneocytes, the “mortar” being intercellular lipid. Previously we showed the outer SC was not homogeneous in its composition, but contained steep gradients of the physiological inorganic elements Na, K and Cl, likely originating from sweat salts. Here we show the innermost corneocytes in human skin are also heterogeneous in composition, undergoing systematic changes in intracellular element concentration during transit into the interior of the SC.Human skin biopsies were taken from the lower leg of individuals with both “good” and “dry” skin and plunge-frozen in a stirred, cooled isopentane/propane mixture.


2009 ◽  
Vol 40 (12) ◽  
pp. 26
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

Pneumologie ◽  
2009 ◽  
Vol 63 (S 01) ◽  
Author(s):  
G Günther ◽  
E Andresen ◽  
J Bullwinkel ◽  
C Lange ◽  
H Heine

Sign in / Sign up

Export Citation Format

Share Document