Implication of Antimicrobial Peptides in Atopic Dermatitis: Role in Regulation of Skin Barrier

Author(s):  
Hai Le Thanh Nguyen ◽  
Juan Valentin Trujillo-Paez ◽  
Yoshie Umehara ◽  
Hainan Yue ◽  
Ge Peng ◽  
...  
2020 ◽  
Vol 21 (20) ◽  
pp. 7607
Author(s):  
Hai Le Thanh Nguyen ◽  
Juan Valentin Trujillo-Paez ◽  
Yoshie Umehara ◽  
Hainan Yue ◽  
Ge Peng ◽  
...  

Atopic dermatitis (AD) is a common chronic inflammatory skin disease that exhibits a complex interplay of skin barrier disruption and immune dysregulation. Patients with AD are susceptible to cutaneous infections that may progress to complications, including staphylococcal septicemia. Although most studies have focused on filaggrin mutations, the physical barrier and antimicrobial barrier also play critical roles in the pathogenesis of AD. Within the physical barrier, the stratum corneum and tight junctions play the most important roles. The tight junction barrier is involved in the pathogenesis of AD, as structural and functional defects in tight junctions not only disrupt the physical barrier but also contribute to immunological impairments. Furthermore, antimicrobial peptides, such as LL-37, human β-defensins, and S100A7, improve tight junction barrier function. Recent studies elucidating the pathogenesis of AD have led to the development of barrier repair therapy for skin barrier defects in patients with this disease. This review analyzes the association between skin barrier disruption in patients with AD and antimicrobial peptides to determine the effect of these peptides on skin barrier repair and to consider employing antimicrobial peptides in barrier repair strategies as an additional approach for AD management.


Dermatitis ◽  
2008 ◽  
Vol 19 (4) ◽  
pp. 218-238
Author(s):  
J. M. Jensen ◽  
M. Witt ◽  
S. Pfeiffer ◽  
R. Gläser ◽  
R. Fölster-Holst ◽  
...  

Allergy ◽  
2021 ◽  
Author(s):  
Verena Kopfnagel ◽  
Sylvia Dreyer ◽  
Jana Zeitvogel ◽  
Dietmar H. Pieper ◽  
Anna Buch ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Johny Bajgai ◽  
Jing Xingyu ◽  
Ailyn Fadriquela ◽  
Rahima Begum ◽  
Dong Heui Kim ◽  
...  

Abstract Background Atopic dermatitis (AD) is a chronic allergic inflammatory skin disease characterized by complex pathogenesis including skin barrier dysfunction, immune-redox disturbances, and pruritus. Prolonged topical treatment with medications such as corticosteroids, calcineurin inhibitors, and T-cell inhibitors may have some potential side-effects. To this end, many researchers have explored numerous alternative therapies using natural products and mineral compounds with antioxidant or immunomodulatory effects to minimize toxicity and adverse-effects. In the current study, we investigated the effects of mineral complex material (MCM) treatment on 2, 4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in SKH-1 hairless mice. Methods Animals were divided into four groups; normal control (NC), negative control treated with DNCB only (DNCB only), positive control treated with DNCB and tacrolimus ointment (PC) and experimental group treated with DNCB and MCM patch (MCM). Skin inflammation and lesion severity were investigated through analyses of skin parameters (barrier score and strength, moisture and trans-epidermal water loss level), histopathology, immunoglobulin E, and cytokines. In addition, reactive oxygen species (ROS), nitric oxide (NO), glutathione peroxidase (GPx), and catalase (CAT) levels were measured in both serum and skin lysate. Results Our results demonstrates that MCM patch improved the progression of AD-like skin lesions by significantly increasing skin barrier strength and decreasing trans-epidermal water loss. Additionally, dermal administration of MCM patch significantly reduced epidermal thickness, ROS, and NO levels in skin lysate. Furthermore, we found that MCM suppressed the levels of AD-involved (Th1 and Th2) cytokines such as IL-2, IFN-γ, and IL-4 in blood. In addition, the levels of other Th1, and Th2 and inflammatory cytokines such as IL-1β, TNF-α, IL-6, IL-12(p70) and IL-10 were found lowest in the MCM group than in the DNCB only and PC groups. Moreover, we found total serum IgE level significantly increased after DNCB treatment, but decreased in the PC and MCM groups. Conclusion Taken together, our findings suggest that MCM application may have beneficial effects either systemic or regional on DNCB-induced AD lesional skin via regulation of the skin barrier function and immune-redox response.


Allergy ◽  
2021 ◽  
Author(s):  
Arturo O. Rinaldi ◽  
Angelica Korsfeldt ◽  
Siobhan Ward ◽  
Daniel Burla ◽  
Anita Dreher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document