Molecular Cytogenetic Analysis of Karyotype and Y Chromosome Conservation in Species of the Genus Talpa (Insectivora)

2020 ◽  
Vol 160 (5) ◽  
pp. 264-271
Author(s):  
Juana Gutierrez ◽  
Gael Aleix-Mata ◽  
Juan A. Marchal ◽  
María Arroyo ◽  
Riccardo Castiglia ◽  
...  

The Talpidae family has a highly stable karyotype. Most of the chromosome studies in this mammal group, however, employed classical cytogenetic techniques. Molecular cytogenetic analyses are still scarce and, for example, no repeated DNA sequences have been described to date. In this work, we used sequence analysis, chromosomal mapping of a LINE1 retroelement sequence, as well as chromosome painting with a whole Y chromosome probe of T. occidentalis to compare the karyotypes of 3 species of the genus Talpa (T. occidentalis, T. romana, and T. aquitania). Our results demonstrate that in Talpa genomes LINE1 sequences are widely distributed on all chromosomes but are enriched in pericentromeric C-band-positive regions. In addition, these LINE1 accumulate on the Y chromosomes of the 3 Talpa species regardless of their euchromatic or heterochromatic condition. Chromosome painting shows that the Y chromosomes in these 3 species are highly conserved. Interestingly, they share sequences with heterochromatic blocks on chromosome pairs 14 and 16 and, to a lesser degree, with the pericentromeric regions of other autosomes. Together, our analyses demonstrate that the repetitive DNA content of chromosomes from Talpa species is highly conserved.

Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1105-1113 ◽  
Author(s):  
Alicia Felip ◽  
Atushi Fujiwara ◽  
William P Young ◽  
Paul A Wheeler ◽  
Marc Noakes ◽  
...  

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.


Genomics ◽  
1989 ◽  
Vol 5 (1) ◽  
pp. 153-156 ◽  
Author(s):  
Ulrich Müller ◽  
Marc Lalande ◽  
Timothy A. Donlon ◽  
Michael W. Heartlein

2013 ◽  
Vol 112 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Rabeya Begum ◽  
Falk Zakrzewski ◽  
Gerhard Menzel ◽  
Beatrice Weber ◽  
Sheikh Shamimul Alam ◽  
...  

2007 ◽  
Vol 19 (1) ◽  
pp. 298
Author(s):  
S. Senbon ◽  
S.-I. Suzuki ◽  
D.-I. Fuchimoto ◽  
M. Iwamoto ◽  
T. Kawarasaki ◽  
...  

The amelogenin (AMEL) gene exists on both X and Y chromosomes in various mammalian species. The non-coding region of this gene is different between X and Y chromosomes. The use of this gene has made sex determination much less complicated, since only one pair of primers is required to amplify the different size fragments of the AMEL gene. Therefore, AMEL had been successfully used to determine the sex in cattle, sheep, and humans. The difference of AMEL genomic sequences between X and Y chromosomes has also been found in pig. In this study, we designed primers that identified AMEL of both chromosomes. The amplicons were isolated and sequenced, and showed a length polymorphism characteristic for the X and Y chromosome in pigs. Furthermore we examined whether a single oocyte or embryo could be sexed. Genomic DNA samples were collected from various breeds of pigs (European breeds: Landrace, Large White, Duroc, Berkshire; Chinese breeds: Meishan, Jinhua). DNA was extracted from ears, tails, or leukocytes using the salting-out method and then dissolved in TE buffer. We used one set of primers for amplifying the pig AMEL gene. The polymerase chain reaction (PCR) procedure was performed with initial denaturation at 94�C for 2 min, followed by 40 cycles of one denaturation step at 98�C for 10 s, primer annealing at 60�C for 30 s, and primer extension at 72�C for 30 s in 20 �L of reaction mixture containing 50 ng genomic DNA. The PCR products were electrophoresed and documented. Some amplicons were isolated and sequenced, and showed a length polymorphism characteristic for the X and Y chromosome in every breed. Next, we tried sexing of pig oocytes and embryos. Cumulus–oocyte complexes (COCs) were aspirated from ovaries recovered from prepubertal gilts. COCs were matured in modified NCSU-37 medium for 44 h, fertilized in vitro, and then cultured in PZM5. The pre-implantation embryos were sampled at 1, 2, 3, 4, and 5–6 days after insemination. Day 1–4 embryos were treated in 5 �L of lysis solution; whole solution were used for subsequent PCR. After Day 5–6 of insemination, only blastocysts were treated in 20 �L of lysis solution, and 5 �L were used for PCR. GV oocytes and electro-activated embryos were sampled as controls. PCR amplification yielded the expected 480-bp and 301-bp products. Male pigs in all breeds are expected to show 2 bands (480 bp and 301 bp), whereas all females, one band only (480 bp). The comparison of AMEL gene DNA sequences among pig breeds showed over 99% homology for the PCR products in both the AMEL-X and the AMEL-Y gene, except for several single-base substitutions. Within GV oocytes and electro-activated embryos, 98% and 96–99% of those examined displayed one band of 480 bp. In IVF groups, 49–55% of those embryos had 2 bands, with no difference between the number of embryos displaying one band and two bands. In conclusion, our findings show that the PCR assay based on the AMEL gene is reliable for sex identification in every pig breed. The advantage of this assay is its capability of identifying sex using a genomic DNA sequence as small as that contained within a single cell such as an oocyte.


1989 ◽  
Vol 9 (3) ◽  
pp. 1173-1182
Author(s):  
K Lowenhaupt ◽  
A Rich ◽  
M L Pardue

Long stretches of (dC-dA)n.(dT-dG)n, abbreviated CA/TG, have a distinctive distribution on Drosophila chromosomes (M.L. Pardue, K. Lowenhaupt, A. Rich, and A. Nordheim, EMBO J. 6:1781-1789, 1987). The distribution of CA/TG suggests a correlation with the overall transcriptional activity of chromosomal regions and with the ability to undergo meiotic recombination. These correlations are conserved among Drosophila species and may indicate one or more chromosomal functions. To test the generality of these findings, we analyzed the distribution of the rest of the six possible mono- and dinucleotide repeats (A/T, C/G, AT/AT, CA/TG, CT/AG, and CG/CG). All but CG/CG were present at significant levels in the genomes of the six Drosophila species studied; however, A/T levels were an order of magnitude lower than those of the other sequences. Data base analyses suggested that the same sequences are present in other eucaryotes. Like CA/TG, both CT/AG and C/G showed increased levels on dosage-compensating chromosomes; however, the individual sites clearly differed for each sequence. In contrast, A/T and AT/AT, although present in Drosophila DNA, could not be detected in situ in polytene chromosomes. We also used in situ hybridization to analyze the neo-Y chromosome of Drosophila miranda, an ancestral autosome that has become attached to the Y chromosome and is now partially heterochromatic. The neo-Y has acquired repeated DNA sequences; we found that the added sequences are as devoid of mono- and dinucleotide repeats as other heterochromatin. The distribution and function of these sequences are likely to result from both their repetitious nature and base contents.


2013 ◽  
Vol 54 (3) ◽  
pp. 265-269 ◽  
Author(s):  
Anna Viktória Németh ◽  
Dénes Dudits ◽  
Márta Molnár-Láng ◽  
Gabriella Linc

Sign in / Sign up

Export Citation Format

Share Document